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EXECUTIVE SUMMARY 

PROJECT OVERVIEW 
California’s ongoing push to Zero Net Energy (ZNE) for residential and commercial buildings 

encourages reducing energy consumption at all levels, including miscellaneous electric loads 

and other plug load devices. Understanding this problem from both a top-down and bottom-

up approach is required to produce deep, forward-facing and sustainable technological 

solutions.  

 

In an earlier project for SCE, “Technology Roadmap towards 2030 and Beyond” (Klopfer, 

Rapier, Luo, Pixley, & Li, 2017), CalPlug presented a top-down view of plug loads and the 

impact of these on ZNE efforts. In another related project for SCE, CalPlug presented a 

bottom-up view of plug load energy use in the first SIM Home (Simulation, Integration, and 

Management Home) report (Xia, Pixley, & Gago-Masague, 2017).  

 

The current project is an extension of the analyses and methodologies outlined in the 

original SIM Home project, assessing the role of behavior and device configuration on 

energy use. To this end, CalPlug developed new open-source tools – the Plug Load 

Simulator Suite 1.2 (PLSim)1 and the Marginal Intervention Savings of Energy Reporter 

(MISER)2 – as well as a database for device state-wise energy usage. With these tools, 

CalPlug calculated energy usage across a defined range of usage conditions for household 

consumer electronics and other plug load devices, then analyzed each set of outcomes to 

determine points of substantial energy use related to usage behavior.  

 

In the first SIM Home report, CalPlug proposed testing a range of device use profiles to 

supplement insights gained through standard energy testing. Standardized test protocols 

such as ENERGY STAR® assess and compare the energy consumption of all devices of a 

certain type using a single (presumably average) set of parameters. In most cases, this is 

based on a controlled and repeatable testing scenario rather than field observations of 

actual usage.  

 

The device use profile method supplements this approach by asking how much consumption 

could vary depending on how devices are used across a wide range of households. CalPlug 

discussed three important aspects of use that could affect energy consumption. The first 

aspect is the amount of active use, such as the number of hours the users watch TV, or how 

many cups of coffee they make each day. The second aspect is the pattern of use over time, 

which may have an impact, particularly if gaps between periods of active use require 

additional warm-up stages or more periods of idle prior to automatically transitioning to 

standby or sleep mode. The third aspect is the extent to which Power Management (PM) 

options are used, such as disabling default sleep or auto-off settings (on-board, or 

automatic PM), or turning off the device when finished (manual PM).  

 

In the original SIM Home project, CalPlug presented an automated testing and display 

system to evaluate the energy impact of these behavioral aspects of usage on a set of 

common household plug load devices. The scope of the work limited the original tests to 

three profiles for each device: high, low, and moderate usage. The results from these 

simulations indicated that even if households contained the same plug load devices, actual 

 

 
1 See: https://github.com/CalPlug/PlugLoadSimulator 
2 See: https://github.com/CalPlug/MISER 

https://github.com/CalPlug/PlugLoadSimulator
https://github.com/CalPlug/MISER
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household energy consumption could be substantially higher or lower than standard 

estimates, depending on how devices are used.  

 

The current project expands on the original project, and describes how profile-based 

evaluation can be expanded as a core component to assessing plug load device energy 

consumption. Compared to the previous study, a larger set of profiles was constructed for 

each device to fully address the roles of the three aspects of behavior (active use, pattern of 

use, and PM).  

 

Eleven example devices were selected and tested: two TVs (HD and 4K), a sound bar, a 

satellite set-top box, a streaming device, a video game console, desktop and laptop 

computers, two pod coffee maker models, and a rice cooker. For each device, a minimum of 

three levels (low, moderate, and high) was defined for each aspect (active use, pattern, and 

PM). Each device's profile set included all logical combinations of levels of the three aspects. 

The levels of each aspect were based on ENERGY STAR protocols (for "moderate" active 

usage) and, whenever possible, on prior research, self-report survey data, and the devices’ 

PM options and factory default settings. For any devices that did not have sufficient field 

data, educated assumptions were required to create the profiles.  

 

The plug load devices were tested using high-resolution equipment to capture the states of 

operation and the power consumption at each state. CalPlug then created schedules that 

were entered into the energy modeling software as parameters to calculate energy 

consumption over time, given the usage pattern described by the device use profile. Lastly, 

the energy modeling software was used to output the annual energy consumption of the 

plug load devices. This investigation evaluated two primary points: the use of the specific 

methodology and tools developed here, based on granular usage evaluation across multiple 

residential devices, and the demonstration of a generalized approach for incorporating 

behavior into device energy use evaluation.  
 
This report details the estimated effects of active use, pattern of use, and PM on energy 

usage for selected devices. This analysis first identifies which devices exhibit large variations 

in energy use across profiles. It then quantitatively assesses whether the variation for each 

device is more strongly driven by the amount of active use, pattern of use, or PM behaviors, 

each suggesting different remediation strategies.  

FINDINGS 
The impact of device use behavior on energy consumption showed major differences across 

the selected devices. The first set of findings focused on the range of energy consumption 

results for the device use profiles relative to that of the standard profile, which reflected the 

standard testing protocols. Some variation in energy consumption around the standard is 

expected and desirable; for instance, devices should use less energy if they are used for 

fewer hours, or if they employ more stringent PM strategies.  

 

However, one device – the satellite set-top box – showed almost no variation across 

profiles; its energy consumption was not responsive to either the amount of active use or to 

PM settings. Device state-level tests revealed the low-power standby mode for the set-top 

box used almost as much energy as the fully-active operational mode, rendering it 

ineffective for saving energy. As there was no variation in energy consumption to account 

for the set-top box, this device’s assessment stopped at this stage. 

 

Other devices revealed much higher ranges between the lowest and highest energy-using 

profiles. The two TVs, and the streaming device, video console, and rice cooker all showed 

ranges of over 200% around their standard profiles, while the desktop and laptop computer 
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showed ranges of over 300%. Ideally, this variation would be roughly equal above and 

below the standard, allowing the assumption that the standard profile results would 

represent the overall average. However, for all the devices just mentioned, the spread 

above the standard profile (that is, using more energy than expected) was much larger than 

that below the standard profile. The only exceptions were the two pod coffee makers, for 

which most device use profiles used less energy than the standard profile. 

 

The Marginal Intervention Savings of Energy Reporter (MISER) tool was used to explore how 

delay times in PM settings can affect the range of outcomes. Data from a prior study of 

desktop computers was used as a test case in which MISER simulated applying alternate 

sleep settings to observed periods of active use and idle time in a field test. The results 

quantified the extent to which enabling sleep settings saves energy compared to disabled 

settings (given an assumed average consumption rate) and how shorter delay times save 

even more. This demonstrates the potential utility of the MISER tool in expanded 

assessment of other devices with varied PM setting options, but would require detailed 

observational data on how those devices are used. 

 

Multivariate regression models were used to identify the proportion of variance in energy 

consumption across profiles that was explained by each of the three aspects: active use, 

pattern of use, and PM (a significant factor in predicting energy consumption for all ten 

remaining devices, which varied in effects of active use and pattern of use aspects).  

 

Four patterns are exhibited: (1) strong impacts of both active use and PM aspects, with 

active almost as high as PM (4K and HDTVs); (2) significant impact of the active use aspect, 

but much lower than the impact for PM (streaming device, video game console, desktop 

computer, and laptop computer); (3) significant impact for PM alone (sound bar and both 

pod coffee makers); and (4) significant impact of pattern of use, exceeding that of PM (rice 

cooker). Assessments of the implications for each device class, and extensions for other 

similar devices, are discussed at length in the report; overall conclusions are summarized. 

 

The strong effect of active use for TVs, especially the larger impact for the more advanced 

4K model, supports renewed efforts for reducing energy consumption during the active 

operation state. The same holds true for desktop and laptop computers, the video game 

console, and the streaming device, all of which showed substantial impact of the amount of 

active use.  

 

It is important to distinguish between active use (when the user directly benefits from the 

device being active) and the active state itself, which may continue long after active use has 

ended, if PM fails (that is, automatic low-power settings are disabled and the user neglects 

to manually turn off the device). Thus, the increased power draw of the active state 

contributes to the energy waste attributed to the PM aspect in these results. Therefore, 

more aggressive improvements to energy efficiency during the active state would also save 

energy during user-idle time, when the devices are left on and unused, either prior to or in 

the absence of automatic transitions to a low-power state. 

 

Pattern of use could affect energy consumption by increasing the number of warming or 

boot-up cycles during the day, or the number of times the device was left idle and stayed on 

until the PM delay time elapsed. Although some differences can be seen across profiles that 

confirm this expectation, the differences are small compared to the effects of different PM 

behaviors.  

 

The rice cooker provided a third way in which pattern of use matters for energy 

consumption: when the device requires a baseline amount of energy for a single use, with 

fairly minor distinctions between a small versus large amount of provided product or 

service. Specifically, the rice cooker requires relatively little additional time, and therefore 
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additional energy, to cook three cups of rice as it does to cook one cup of rice. This means 

that cooking three cups of rice at one time takes substantially less energy than cooking one 

cup of rice at a time over three instances (say, at each meal). Here, the effect of pattern 

can be interpreted as an effect of active use, in that the only solution would be to reduce 

the baseline energy consumption for the active cooking state. This lesson should also apply 

to other types of kitchen appliances that cook food or heat water. 

 

The device use profile PM definitions combined two factors: settings that automatically 

transitioned the devices into a sleep or soft-off state after a specified delay inactive period, 

and whether or not the users turned the devices off immediately after using them. For every 

device, a moderate level of PM is defined with the factory default automatic setting (if any) 

along with the most likely user reaction at the end of use.  

 

Most devices have at least one low level, in which any PM setting is disabled and the user 

leaves the device on, and at least one high level, in which the user turns the device off after 

each use, negating any effect of an automatic PM setting. The devices studied in the current 

project revealed three main failure points for PM: when automatic settings are disabled or 

otherwise ineffectively utilized; when low-power modes do not save much energy; and when 

devices remain in a fully-functional active state during long idle periods. These problems are 

not unknown, but the approach used in the current project helps to identify and prioritize 

which problems to focus on for any specific device.  

 

The most pressing problem is how to get more devices to automatically transition to sleep 

or other low-power modes. Unlike those of earlier generations, all of these devices offered 

at least one low-power mode and an automatic PM setting for transitioning to it. However, if 

automatic sleep or auto-off settings are disabled, they do not save any energy. Worse, they 

result in devices remaining on for long periods – sometimes all day, every day.  

 

CalPlug's field study shows that many office desktop computers are left idle at all times, but 

little research is available to indicate how often users leave other devices on all the time. 

However, the effect of not using PM and leaving devices in the active state all day long is so 

large that even if only a small proportion of households did this, it would take a much larger 

proportion of households consistently enacting stringent PM behaviors to counteract all the 

wasted energy. 

 

The simplest solution for the first failure point is to ensure devices enable PM by default. 

The lack of default PM in the pod coffee makers explained why most of the device use 

profiles saved more energy than the standard profile. A more complicated issue is how to 

design the PM settings and the associated user interface to best encourage users to keep 

them enabled. However, as shown with the set-top box, if the standby mode does not save 

a substantial amount of energy, the PM settings will be ineffective even if enabled. 

 

The third failure point identified here is when devices spend considerable time at full power 

during periods of inactivity when they could conceivably enter a lower-power idle state. 

Computers lead by example here, by shifting into "short idle" and then into "long idle" 

states in the absence of user input. These states pause certain processes to save energy, 

yet leave the devices ready to quickly resume full activity when the users return.  

 

This approach might fruitfully be applied to other devices, such as the video game console 

tested here. When the device is not actively running a game, it switches to a main-menu 

state that uses almost as much energy as active gameplay, and remains in that high-power 

state until it transitions to sleep or is turned off. If it instead transitioned to a lower-power 

idle state, substantial energy could be saved. 
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A potential missed opportunity for reducing energy consumption was also identified: 

automatic transitions to a low-power state based on the status of connected devices was 

shown to be very effective in the sound bar, and could be effective in others. 

 

A major limitation of the method used here is that the device use profile definitions – like 

any testing or estimation standards – are only as accurate as the data underlying the 

assumptions. The shortage of available data on how these devices are actually used in real-

life households means any savings claims are subject to unknown error margins. The 

findings shown here help underline the need for more systematic research into user 

behavior and how it affects energy consumption. 

  

Multiple factors come into play when evaluating energy usage. The approach and tools 

developed here can provide a methodology for future research efforts, to systematically 

evaluate priorities for efficiency efforts beyond the devices tested in this project. Device use 

profiles can be used to identify modes of waste in a wide range of plug load devices, with 

further investigation clarifying and refining the techniques and assumptions. By providing a 

consistent set of profiles, devices in categories can be cross compared to assess savings 

potential in variable usage, beyond conventional benchmarking.  

 

Data from this project, for all devices discussed as well as others in process, is provided in 

an open-source format to aid further research. This dataset and the tools developed during 

this project are available at: https://github.com/CalPlug/PlugLoadSimulator. 

 

UTILITY RECOMMENDATIONS 
The findings of this investigation highlight several device-category specific targeted points 

for energy efficiency programs. Testing and evaluating devices by factoring in a variety of 

uses on a per-state basis provides a systematic means of targeting components contributing 

to total energy use, as well as highlighting inroads to device efficiency improvement. This 

can allow the rapid evaluation of various types of plug loads, to highlight opportunities for 

incentive programs, voluntary agreements, and codes and standards.  

 

This is similar to the manner in which other common energy modeling methods and 

corresponding software utilities are used to evaluate building envelopes for HVAC design 

and area layouts for lighting. A device use profile model with standardized profiles can be 

used independently, or can outline operational evaluations that may be performed to 

provide relevant bounds for energy usage, thereby saving time and streamlining testing. In 

addition to method takeaways, based on the specific tests conducted on the devices within 

this report, we provide recommendations focused on the following categories.  

TARGETS FOR ENERGY EFFICIENCY PROGRAMS 
Device evaluations provide insight on settings and configurations related to promoting 

energy savings without a reduction in overall utility (efficiency). All devices provide an 

opportunity for passive efficiency targeting. Categorizing device Unit Energy Consumption 

(UEC) based on usage models and a confidence band provides a more realistic way to track 

energy usage for direct device and device category evaluation. Considering this approach in 

program development can provide more realistic models for program returns considering 

dynamic action.  

 

Field trial results for one device can yield a set of state-time-power values that can be used 

to improve profiles of usage and advance future evaluation acuity to better model upcoming 

devices. In this manner, the preliminary evaluation before CPUC workpaper development 

can be conducted quickly to screen new emerging technologies and approaches in dynamic 

https://github.com/CalPlug/PlugLoadSimulator
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usage. This method allows simplifying the operation model for coordinated, multi-device 

integrated energy management, especially in Internet of Things (IoT) device configurations.  

 

LOAD SHIFTING PROGRAM CONSIDERATIONS 
Plug load devices, including those evaluated here, are challenging to target for Demand 

Response (DR) programs. The problem is that, unlike HVAC, there is no lower-power active 

state to which a DR command can shift devices, and cutting device power while in active 

use creates unacceptable user disruption. Major issues still need to be addressed before 

demand management is affectively applied to many classes of plug load.  

 

The current project cannot address the inherent challenges of remotely controlling these 

plug load devices during DR events. However, the device use profile approach combined 

with PLSim tool estimates could be used to predict and understand the effects of voluntary 

load-shifting behaviors, either in response to DR requests or Time-of-Use (TOU) pricing 

incentives. Analyzing various DR strategies could predict the savings potential of different 

implementation cases. Models could be developed using elements of the approach outlined 

here with PLSim, to evaluate the level of user compliance required to target a specific 

savings level for a device, device class, or multiple devices within a home.  

 

INCENTIVES 
By providing a method for improved evaluation, preliminary assessment leading to utility 

field trials can be streamlined, leading to faster appraisal and program development. This 

can help develop and confirm reasonable bounds to predict savings. Field trial data can be 

rapidly simulated across devices with operational differences, to assess the impact of 

feature changes prior to specific field trials for these updated devices. The feature changes 

can then be assessed to determine the extent of their impact on energy usage.  

 

These factors lead to improved program development. Beyond technical-focused incentives, 

behavioral incentives – by rewarding behavior based on tangible metrics such as reduced 

energy use (commonly called “pay for performance”) – have shown both short and long-

term benefits, but can exhibit problems related to long-term performance and rebound 

effects when programs are terminated. Elements of this work show how behavior and 

energy usage are linked and may be addressed, and can be used to model the range of 

program effectiveness. Better understanding of user behavior in a variety of situations can 

guide device operation to limit energy usage. These features can be incentivized directly or 

indirectly, where the inclusion of behavior considerations may lead to reduced energy 

consumption for a class of devices in a category using such operational features.  

 

TESTING AND EVALUATION PROGRAMS, CODES AND STANDARDS UPDATES 
The current project demonstrates an expanded approach to modeling plug loads compared 

to conventional methods. Plug loads as a load category are often poorly classified in building 

load models. When performing building analyses, the impact of plug loads on total building 

energy usage is often modeled as an energy usage value per square foot or a provided 

constant based on room usage and expected occupancy. This propagates the level of error 

to other calculations of building energy usage related to load and ZNE implementations.  

 

Elements of this state-based approach provides improved granularity on a per-device level 

for modeling, along with an uncertainty value that can be propagated through calculations. 

This method also allows improved energy usage calculations for efficiency programs and 

efforts to target modes of device waste to improve future model design. Better knowledge 

of the role of behavior on energy usage can help improve testing programs used as 

discriminating factors for incentive programs. This information can directly improve testing 

programs or indirectly provide information when extending current programs across multiple 

consumer electronics categories.  
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ABBREVIATIONS AND ACRONYMS 

4K TV Ultra-High-Definition TV 

A Amp 

AI Artificial Intelligence 

AC Alternating Current 

AEC Annual Energy Consumption 

AHCI Advanced Host Controller Interface 

APS Advanced Power Strip 

AV Audiovisual 

CalPlug California Plug Load Research Center 

CEC  Consumer Electronics Control (a feature of HDMI) 

CLASS California Lighting and Appliance Saturation Survey 

CPUC California Public Utilities Commission 

DOE Department of Energy 

DVD Digital Video Disc 

DVR Digital Video Recorder 

EIA Energy Information Administration 

EPA Environmental Protection Agency 

EPIC Electric Program Investment Charge 

HDMI High-Definition Multimedia Interface 

HDTV High-Definition TV 

HVAC Heating, Ventilation, and Air Conditioning 

IoT Internet of Things 

IOU Investor-Owned Utility 

kW Kilowatt 

kWh Kilowatt-hour 

LCD Liquid Crystal Display 

LinearSVM Linear Supervised Machine Learning (an AI method) 
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LSTM Long Short Term Memory 

MCMC Monte Carlo Markov Chain 

MELs Miscellaneous Electrical Loads 

MISER Marginal Intervention Savings of Energy Reporter  

Mod Moderate 

PC Personal Computer 

PF Power Factor 

PLSim 
Plug Load Simulator, a software application developed for this project to 

model energy usage in devices based on usage states. 

PM Power Management  

POU Publicly Owned/Municipal/Co-Op Utility 

RASS Residential Appliance Saturation Study 

RECS Residential Energy Consumption Survey 

SCE Southern California Edison 

SIM Home Simulation, Integration, and Management Home 

SNE Small Network Equipment 

SFF Small Form Factor 

THDi Total Harmonic Distortion of Current 

TV Television 

UEC Unit Energy Consumption 

USB Universal Serial Bus 

V Volt 

W Watt 

Wh Watt-hour 

ZNE Zero Net Energy 
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INTRODUCTION 

BACKGROUND 
Utility companies, in an effort to increase grid sustainability, have expressed greater 

interest in understanding real-world home device energy usage. A particularly difficult area 

of this investigation is the varying behavioral energy usage of Miscellaneous Electric Loads 

(MELs) and plug/process loads (hereafter collectively referred to as plug loads). While many 

households contain the same plug load devices, there is a large range of standard estimates 

on how these devices are being used in the home, which leads to the question of how to 

prepare the grid for these highly-variable loads. With the total number of consumer 

electronic devices expected to rise in each household (U.S. Energy Information 

Administration, 2011, 2019), it has become very important to find strategies for managing 

the energy consumed by plug loads in current and new device categories. 

 

State legislative goals combined with utility rate decoupling, or the separation between 

utility profits and energy sold, is a main driver of energy efficiency efforts. This rate-

decoupling practice has been long entrenched in California’s Investor-Owned Utilities (IOUs) 

and Publicly-Owned/municipal/co-op Utilities (POUs), and is becoming common practice 

across the United States. When considerations, due to emissions at the state and national 

level, are factored in with green energy sourcing options (and availability of such 

resources), total energy reduction (as well as the time when demand is reduced to match 

supply) is increasingly significant.  

 

As energy efficiency and supply and demand are aligned to match future energy balance 

with fewer fossil-fueled sources, less nuclear-sourced energy, and an overall reduction in 

spinning reserves, energy conservation becomes a greater challenge – on a daily, yearly, 

and multi-year basis. Continued efforts from state and regional legislative bodies and 

organizations, as well specific programs sponsored by the federal government (namely the 

Department of Energy [DOE], Environmental Protection Agency [EPA], and Department of 

Commerce) have continued to allow consistent energy reduction in California and across the 

US in general, but key areas of concentrated energy usage still exist. With plug load device 

usage increasing and electrification becoming a major effort, continued maintenance of 

California’s largely flat per-capita energy usage requires continued efficiency efforts across 

many device classes, including plug loads.  

 

Evaluating and characterizing device-level energy usage plays a major role in determining 

focus points for efforts and evaluation of proposed solution effectiveness. Standard energy 

testing, reporting, and modeling protocols provide manufacturers, regulatory authorities, 

and consumers a way to evaluate energy use and compare energy efficiency options. 

Energy test procedures exist for a wide range of devices; however, there are three issues 

that complicate using current approaches.  

 

First, energy efficiency test methodologies and procedures vary significantly across 

products, in part because they are often designed by proponents of a particular product. 

These test variations make it impossible to compare results across products. Second, even if 

the same test methodologies are used, conflict of interest becomes a concern when 

manufacturers or other proponents conduct the tests. Third, individual device single-point 

evaluation tests cannot capture how the devices are used in real-life situations, when they 

are often network connected to other related devices and subjected to a variety of user  

behavior. These issues lead to a significant roadblock when trying to assess the true savings 
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potential of emerging technologies, or to effectively communicate results to utilities and 

consumers (Xia et al., 2017). 

 

Because many devices within this class are consumer electronics or have strong behavioral 

components, to understand energy use and address opportunities for improvement, the role 

of behavior in testing and usage must be considered. When estimating the impact of device 

usage, one of two approaches is typically used: 

 

1. A representative, reproducible test methodology is determined whereby a par-evaluation 

can be made between products. Elements from real-world valuations can be integrated 

where they fit into a revision process, to update the methodology and protocol for 

testing. In the end, a single number (or a feature-based numerical range) is produced. 

This approach is relatively low cost compared to alternative approaches, but is based on 

assumptions, which if judiciously held, can provide par-comparison between devices. 

The nature of this type of evaluation provides a methodology for comparing device 

energy usage based on testing assumptions. 

 

2. A device class (or representative devices) is tested across a population of individuals in 

normal (or simulated-normal) usage. Logging and understanding this usage helps assess 

it across a period of time. While this method produces a more realistic representation of 

energy usage in the field, reproducibility is often a concern. If the device is changed or 

improved, the impact of the improvement may be hard to estimate without exceedingly 

granular test data – and even with it, only rough estimations are possible. This approach 

is often expensive, and small model changes require reevaluation, unless sufficient 

controls are in place to discount the modification as non-effective to measured 

outcomes.  

ENERGY USAGE IN PLUG LOADS 
In general, plug loads continue to be a growing source of residential and commercial total 

building loads, in part due to efficiency gains for space heating, water heating, and lighting, 

as well as new device categories and more categories being used (see Figure 1) (Nordman 

& Sanchez, 2006; U.S. Energy Information Administration, 2011). Plug loads included wall-

plugged devices, in addition to MELs (included in this catch-all category are building wired-

in loads for controls, environmental, and safety, as well as other uncategorized systems).  

 

Plug loads specifically have grown across multiple categories contributing to individual 

device UEC or population Average Energy Consumption (AEC). In residential environments, 

this may include alarm and surveillance systems, thermostats, and integrated controls (but 

often not the controlled loads themselves). To maintain device population AEC, the UEC 

must be offset by dividing the expected device population growth by the total number of 

households with the device. Assuming constant proportionality, an increasing population 

leads to a larger number of devices in use. Similarly, for devices commonly used in 

multiples per residence, the per-household growth should be considered.  
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FIGURE 1. THE CHANGING NATURE OF RESIDENTIAL ENERGY CONSUMPTION IN THE US 

Figure Source: 1978 and 2005 Residential Energy Consumption Survey (U.S. Energy Information Administration, 
2011) 

 

Considering macro changes, both the average living space and total numbers of devices 

have increased over time (Figure 2). Cisco estimates 13 devices per person by 2021 (Cisco, 

2016). The average home now boasts more than seven screens, and 60% of a nationally-

representative sample of survey respondents use devices more than three hours per day 

(ReportLinker, 2017).  

 

The 2016 EIA energy outlook to 2040 predicts miscellaneous loads (plug loads included) will 

increase by an adjusted average growth rate of 1.4% per year to 2040, with a commercial 

growth of 11.5% (U.S. Energy Information Administration, 2016). Audio systems and game 

consoles are major annual consumers (Delforge & Horowitz, 2014), with electric grills and 

coffee machines acting as major active load devices (Gelber, 2017; Navigant Consulting & 

SAIC (now Leidos), 2017).  

 

Targeting specific loads (including major appliances, HVAC, and lighting) in addition to 

setting efficiency standards for scale has provided major impacts in this effort. Technology 

and techniques have reached a point where continued scale and implementation are the 

major category growth directions. During this period, the disparate category of plug and 

process loads, which encompasses consumer electronics, increasing loads within categories 

of devices that provide health and safety as well as general connectivity are still major 

challenges.  

 

As technology evolves, new categories continue to enter the marketplace, particularly as 

many plug load devices have connectivity that adds to (but also allows the potential for) 

coordinated and improved PM. Such devices could disrupt current progress without 

continued focused efforts. Because of the disparate nature of devices classified as plug 

loads, there is still a substantial effort to address current devices and prepare for new ones 

(Rubin, Nguyen, Hietpas, Young, & Tartaglia, 2016).  
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FIGURE 2. AVERAGE RESIDENTIAL SIZE AND OCCUPANCY OVER TIME 

Figure Source: US Census, AEI (Perry, 2016) 

 

Considering both commercial and residential applications, plug-in devices are responsible for 

approximately two-thirds of California’s residential electricity consumption, including 20 

percent for TVs and office equipment and another 11 percent for miscellaneous devices 

(Palmgren, Stevens, Goldberg, Barnes, & Rothkin, 2009). It is estimated that plug-in 

equipment and miscellaneous loads will be responsible for 70 percent of electricity demand 

growth from 2015 to 2024 (Delforge, 2015). Therefore, while household plug load devices 

are individually low in energy demand, they collectively pose major challenges to future 

sustainability plans, such as California’s ZNE initiative for all new homes, targeted for 2020. 

 

For a ZNE installation to be economically successful, reduced energy usage is a key first 

step (Table 1) to allow cost-effective offset generation sizing. Time-of-day usage is 

important when considering grid supply, but it is of very high importance for measuring the 

annual usage of strict ZNE installations that do not have net metering. Without net 

metering, usage must consider generation and storage to match demand (including 

miscellaneous electric, process, and plug loads), which play a role in reducing overall peak 

demand as well as in boosting efficiency to reduce total consumption. Although it is not a 

focus of the current report, the methods developed here could help model and assess device 

usage over time, as well as its contribution to peak load demand.  
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TABLE 1. THE 5 R’S OF SUCCESSFUL ZERO NET ENERGY INSTALLATIONS (GENERAL CASE) 

Order Action Description 

1 Reduce Reduce structure on-peak demand followed by total demand. 

2 Replace Generate energy to offset building use, either as possible on an annual basis (net 
metering) or as much as economically possible on a momentary basis. Co-gen is 
viable in some commercial applications for energy offset. 

3 Relocate 
(Commercial) 

Campus or community generation can be shifted between localized over-
generation and under-generation/overuse between structures or entities. 
Campus co-gen viable for energy offset in some cases. 

4 Retain Energy storage to offset campus-wide or individual building usage. 

5 Reevaluate Functional ZNE is dynamic equilibrium. Changes in devices, user behavior, 
equipment age, or control system disintegration may cause reduced 
performance. Inspections potentially followed with training, tuning, or control 
system adjustments may be needed to maintain continued performance. 

 

Considering how devices are used, the impact of users and the ability of devices to use DR 

coordination to shed load varies. Better understanding these impacts can frame how smart 

technology can be incorporated into devices to better coordinate energy usage in an 

unobtrusive and commercially-sustainable manner, which is especially problematic for plug 

load devices. Onboard PM features and how users interact with devices frames the 

discussion for developing smart devices with better-integrated demand management. 

 

With a continued focus on energy efficiency and DR as a dual goal across all categories, 

these efforts must not be at the substantial expense of user experience to be commercially 

effective. Evaluating the impact of savings modes with granular evaluations can help find 

and address sources of waste. In addition to post-development testing, such an approach 

can help manufacturers meet efficiency goals through streamlined testing during device 

development, and understanding how devices are intended to be used. Development of 

effective energy-saving features can be quickly evaluated by using behavioral data during 

development, allowing rapid design revisions.  

 

It can be challenging to develop effective PM. A balance must be struck between sufficient 

savings to merit the effort and impact on the user experience. In some use cases, users 

have been willing to make reasonable changes to expectations. An example of this is having 

a computer monitor turn off when not used for a specified period of time, provided the 

computer returns to operation when required. Monitor sleep is enabled by default, and is 

observed to be engaged for most desktop computers (Klopfer, Pixley, Syed, & Li, 2019; 

Pixley & Ross, 2014).  

 

When set as the initial default, computer sleep is not as universally maintained as monitor 

sleep, possibly in part because of a denial of some usage capabilities in practice, including 

delayed startup, interrupted downloads and processes, and a lack easy remote access. 

Similarly, mobile device users are somewhat more tolerant to energy-saving actions, since 

not using them leads to rapid battery depletion and denial of service. Even so, user 

compliance with energy-saving features is still a matter of the developer’s judicious 

decisions. A phone or tablet computer sleeping during use sessions could often be 

interpreted by the user as a malfunction or pernicious activity. 

 

Clearly, a balance of action is necessary for energy savings. Unlike other building loads, the 

direct contact nature of plug loads precludes using strategies such as delayed, period-

reduced, or shifted use (common for HVAC and water heating), or reduced utility (for 

example, light source dimming). While it is difficult to apply a wide brush across many plug 

load sub categories, using consumer electronics as an example case, actions such as 
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slowing down device computation speeds, response actions, or screen brightness parallel to 

classic DR actions are difficult without severely hampering the user experience and possibly 

confusing users about proper device operation. With consumer electronics, three specific 

waste categories are noted: standby load, inappropriate usage, and wasteful usage (see 

Figure 3). For each category, there are multiple energy management methods. The modes 

of waste are outlined here: 

 

1. Standby Load: Clearly, it is wasteful for non-operating load to draw excessive energy. 

The rise of the soft-off modes and transformer-driven linear AC/DC power in many 

devices led to a relatively-steady increase in standby power requirements from the 

1980s through the early 2000s.  

 

In the early 2000s, improved efforts to limit standby load, along with the addition of 

efficient switching (and later, “burst” mode) power supplies and more thoughtful design, 

continued to reduce standby energy load. In many household devices, this represents 

less than 1.0 watts (W). Continued work by the European Union (European Commission, 

2014), Energy Commission for the State of California (California Energy Commission, 

2018; Singh & Rider, 2008), the Consumer Technology Association (Urban, Roth, Singh, 

& Howes, 2017), the Lawrence Berkeley National Laboratory (Lawrence Berkeley 

National Laboratory, 2019), and other groups has continued to reduce device standby 

load for existing, mature categories.  

 

As effectiveness eventually leads to efficiency, new categories (for example, High-

Definition [HD] flat-panel TVs) may still require evolution through this process. New 

technical energy consumption challenges are present with 4K TVs, which have 

substantially-higher energy consumption compared to current-generation HDTVs. 

Increases occur with new device categories, and are mitigated with continued focused 

research and development efforts.  

 

2. Inappropriate Usage: This mode of waste happens when less-efficient devices are used 

in place of more efficient alternatives. This may include actions such as using a toaster 

oven in place of a regular toaster for cooking a slice of bread, or using a range oven 

instead of a toaster oven for reheating a slice of pizza. All devices discussed operate as 

intended, but waste can be avoided through more careful user choice. 

 

3. Wasteful Usage: Using devices that consume energy beyond what is needed to satisfy 

the desired outcome or service is covered within this mode. This is most problematic 

when the device uses a relatively high amount of energy (see the catch-all solution #0 

in Figure 3) in multiple usage modes. This is a major category of multiple sub-modes of 

targeted waste. The effect can be based on four specific directions: 

 

a. The user behaves in ways that are inherently wasteful – for example, a TV that is 

commonly left on with nobody watching it, or a space heater used in a drafty room. 

 

b. The user (knowingly or unknowingly) does not take advantage of the device's 

energy-efficient operational modes. They may not be aware of the impact of these 

features, or even of their existence. Examples may include a user who falls asleep in 

front of a TV without using the sleep timer, or a user who disables a computer's PM 

features. 

 



SIM Home Extended Testing ET17SCE1190 

California Plug Load Research Center  Page 21 

September 2019 

c. The device either does not have effective energy management capabilities, or it is 

designed in a manner that does not allow easy or sustained usage by typical end 

users. Examples may include a rice cooker that does not have auto-shutoff, or a set-

top box that provides energy-saving modes, but actually delivers limited savings in 

these modes.  

 

d. Compared to best-known practices, the device uses a larger amount of energy 

compared to alternative solutions. This may be due to inherent wasteful operation, 

such as low boiler insulation in a hot water dispenser requiring substantial energy to 

reach and hold a temperature set point. 
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FIGURE 3. FLOW DIAGRAM OF PLUG LOAD WASTE MODES AND INTERVENTION STRATEGIES.  
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Assessing potential intervention strategies for both utility energy efficiency and DR 

programs, within multiple sub-classes of plug loads, requires understanding the root-cause 

waste source. Proposed solutions must consider scalability and impact, as well as the 

difficulty of intervention strategies. Some devices are more energy- intensive than others 

(for example, portable heaters compared to coffee makers) and obviously, devices with 

higher energy consumption produce higher device-level savings when wasteful use is 

reduced.  

 

However, the impact of devices that have lower energy use but more waste (for example, 

set-top boxes) can be even greater. Although the vast majority of these devices consume 

between 10 to 35 W, they are among the highest home energy users (Lawrence Berkeley 

National Laboratory, 2019). Clearly, each device category has unique requirements for 

specific interventions to be shared across plug load groups due to device commonalities. 

 

For analysis, by comparing variations in usage against controlled parameters, changes in 

energy use localized to specific energy-efficiency efforts can be applied in two main modes: 

passive and active. In passive efficiency efforts, each state is targeted to reduce energy 

usage by device design and operation, to reduce total energy usage at an operational state 

level. The “always on” state is the first target, along with other states in which the device is 

run for extended periods. Granularly, each state is investigated to see if running a given 

device can shorten its operation in a higher-power state and transition sooner to a lower 

state, or reduce power consumption in a particular state.  

 

Active efficiency includes using PM and improving interfaces to promote user efficiency, 

either by making PM features more intuitive to use, or by boosting the marketed benefits or 

seamlessness of these features in general device operation. The next point is boosting PM 

feature capability (by expanding existing capability or adding more features). The third 

approach is active PM through features such as presence sensing, timed actions, or 

coordinated PM across devices. All of these approaches can be modeled using the methods 

outlined in this work. 

INVESTIGATION OVERVIEW AND STUDY FOCUS 
In this study, we demonstrate a modeling approach for estimating energy usage and the 

impact of behavior-related effects on energy use across multiple devices and categories. 

Using modeled user device actions, energy states related to action pathways are broken 

down to a granular degree required to sequence typical device actions. Accordingly, a 

variety of behaviors can be applied to the model to generate a spread of energy usage 

across known actions. By using alternative approaches based on behavior chains, device-

based actions can be quickly simulated to produce energy usage outcomes. 

 

To accomplish this, we constructed profiles describing device use over a 24-hour period 

based on three main aspects of how the device is used in real-life situations: total amount 

of active use, pattern of active use, and PM settings and behaviors. This approach was 

developed in an earlier project, referred to in this paper as the original SIM Home report 

(Xia et al., 2017), which was conducted using the SIM Home testing lab. The current project 

extends the idea and performs the tests that were outside the scope of the initial report.  

 

For the simplest devices, variation in active use should explain all (or almost all) energy use 

variations. For instance, a basic hot air popcorn machine has only two states of operation: 

(1) on; and (2) blowing hot air when plugged in, and off when unplugged. Because it only 

uses energy when plugged in, the total amount of active use time is adequate to summarize 

its usage.  
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However, many plug load devices are more complex than this simple example. For devices 

with heat-up or cool-down periods, the pattern of use may be important; that is, whether all 

of the use happens in one period, or is spread out over the course of the day. Finally, an 

increasing number of entertainment, office, and kitchen appliances use “vampire” load 

energy, even when they are turned off, or have standby modes that they may or may not 

transition to when not being used. Therefore, energy usage estimates may be substantially 

affected depending on available PM options and whether users enable or disable settings, 

and turn devices off when finished. Estimations based on nameplate maximum power 

consumption values produce exceptionally-high usage estimates. 

 

A range of device use profiles was developed to supplement the standard testing procedure 

and establish a range of energy usage per device. Standardized testing methods provide a 

consistency for each device being tested against an average usage profile, which when 

comparing across many devices of a certain type (i.e. different brands of 4K TVs) it is 

imperative that each device be tested using the same procedure, to obtain an accurate 

device comparison.  

 

However, there is a huge variation in how people actually use these devices in their homes, 

and investigating these differences helps us understand them. Therefore, SIM Home seeks 

to supplement standard testing procedures by looking at multiple behavioral profiles across 

one device to get a wide view of real-life plug load energy usage.  

 

Simulated behavior processes based on tested devices with known actions of use are 

applied to abstracted device models. By carrying forward energy use probabilities based on 

device-state energy usage, ranges can be estimated. By comparing differences in actions 

and the impact on energy, a distribution of uses and conclusions can be drawn about device 

operation to improve user-device interaction and reduce energy consumption in future 

device models. As with assessing the role of solutions, this report discusses each of the 

three mentioned modes. 

 

In this study, the possible states of each device are observed during testing, and modeled 

based on any state order dependency. Ideally, each device has one steady state that is used 

in active operation, and other states that take the device to the steady state, then through 

operation and back to this state. The only exception is when multiple sequential states are 

required to reach a steady state. An example of this is “soft off,” or active operation in a 

“hold” mode. For instance, a device may require bootup, then user actions take the device 

through a state (or state sequence) by device action, and once finished, return the device 

back to a steady state.  

 

Energy usage values are shown, in addition to simulation where knowledge of device actions 

and multiple pre-determined, sequenced actions and events are considered. Usage profiles 

were constructed based on encapsulating usage within categories of usage, PM, and daily 

usage cycles. For each category, a minimum of three specified variance categories is 

specified – typically light, moderate, and heavy. Accordingly, through multivariate 

regression against energy usage, each category’s impact can be estimated. 

 

Specifically for this analysis, the moderate or standard usage profile was set at the median 

amount of time the device was used according to survey data, with default PM settings (if 

any) employed. By comparison, if the household actually exhibited low use – defined as in 

the 10th percentile of duration and frequency of use and high-PM settings – the moderate 

estimate would overestimate consumption by 236% (Xia et al., 2017).  

 

Per the initial SIM Home study, if the household actually exhibited heavy use – defined as in 

the 90th percentile of duration and frequency of use and disabled PM settings – the 



SIM Home Extended Testing ET17SCE1190 

California Plug Load Research Center  Page 25 

September 2019 

moderate estimate would underestimate consumption by 61%. Comparing the heavy-use 

household to the low-use household indicates that some households may consume over 

700% more than others.  

 

Yet this is certainly an underestimate of the extent of the problem, as SIM Home simulates 

a one-bedroom household that contains eleven modeled plug load devices. Most one-

bedroom households would have many more devices, and of course larger homes would 

have even more; with every device added to the estimate, the range between the lowest-

use household and the highest-use household can be expected to grow. That is, the extent 

to which any “average” estimate of energy usage is wrong would get larger and larger. The 

discussed devices are ones deemed both popular and relevant for potential energy-saving 

measures due to past discussion and ongoing future-facing discussion.  

 

Evaluating device-specific energy usage profiles provides a range of values in different 

operating conditions. Taking the energy usage results for each profile and performing a 

multivariate analysis considering profile parameters can provide insight on factors of 

influence, and therefore which technical and behavioral factors have the greatest impact on 

energy usage for a given device.  
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EVALUATION METHODS 

CONSTRUCTING DEVICE USAGE PROFILES 
Developing usage profiles for devices tested in this project required several steps: selecting 

which devices would be included in the scope, determining the possible states each device 

experienced during normal use, testing device power consumption during those states, 

testing to confirm the state-energy relationship, and constructing usage profiles 

incorporating the possible states, possible PM options, and likely range of user behavior.  

 

Devices can be modeled as abstracted or real, to provide energy usage examples. An 

abstracted device is one for which a real or composite set of devices provides the feature 

set, and potentially the time-state-power information, used to match operational logic with 

energy usage. Devices can be built heavily on a real-world device or be a balanced mix of 

carefully-chosen aspects of similar devices in a class. This type of representation can be 

used to model a general device with a given class-representative feature set. A real device 

model is based on a contemporary device that has profiles built directly from operational 

logic, feature set, and time-state power information. Profiles are built directly from device 

operation in common device tasks. Both approaches have merits, but in this study, real 

devices are evaluated. 

SELECTING DEVICES 

As in the first SIM Home project, the first phase of the current project involved selecting, 

obtaining, and installing plug load devices to populate the SIM Home environment, and 

planning the tests that were conducted later. In the earlier project, secondary analyses 

were conducted on several household studies to determine which devices were most 

prevalent. For detailed results, please consult this work (Xia et al., 2017).  

Briefly, the studies included CLASS 2012 (California Lighting and Appliance Saturation 

Survey), RECS 2009 (Residential Energy Consumption Survey), RASS 2009 (California 

Residential Appliance Saturation Survey), SKA 2015 (Small Kitchen Appliance survey, 

conducted by Mintel), and). In cases where raw datasets were not available, results from 

published reports were used instead, including reports from PASUS 2009 (Portable 

Appliance Saturation and Usage Survey, conducted by the Association of Home Appliance 

Manufacturers), the Bureau of Labor Statistics’ American Time Use Survey, device field 

trials, and Nielson. In a later addendum to the original SIM Home report, results were 

updated when RECS 2015 data became available. This information is not available in all 

published versions, and accordingly, the relevant updated and extended tables are included 

in Appendix A of this report. The RECS 2015 data did not indicate any substantial change in 

prevalence of the tested devices. 

For the current project, one priority was to focus on the same device types that were 

included before (although some of the specific models of SIM Home devices have changed). 

The criteria used were that devices should still be considered prevalent, or trending upward 

in prevalence, in U.S. households and that their energy consumption could potentially vary 

by the aspects assessed. That is, devices that must stay on at all times cannot vary by 

length of usage time, pattern of usage, or PM, so would not be relevant for these tests. 

The final list of tested devices is shown in Table 2. This includes all devices evaluated 

through this project, although a number of devices CalPlug legacy tested were imported into 
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this record format and included in the PLSim XML database, in addition to placeholder 

device categories based on lists of common plug load devices for which no representative 

had yet been evaluated. 

  

All devices shown here were run through basic power testing, and those results are included 

in the PLSim energy usage database. Devices marked with an asterisk went through 

additional testing and analyses necessary for the device use profile testing presented in this 

report. This database includes all listed devices, and is provided with usage information in 

Table 2, including those devices that were not evaluated with profile-based energy use 

simulation. 
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TABLE 2. INVESTIGATED DEVICES AND CORRESPONDING CATEGORIES 

Device Category Tested Devices 

Audiovisual/Entertainment Devices 4K (UHD) TV * 

HDTV * 

Game Console * 

Satellite (HD) Set-top Box * 

Audio Sound Bar * 

Streaming Device* 

DVD Player 

Blu-ray Player 

5.1 Audio System 

Small Audio System 

Computers Desktop Computer * 

Laptop Computer * 

Monitor 

Computer Speakers 

Printer (inkjet-MFC and laser types) 

Media Server/Network Attached Storage 

DSL Modem 

Cooking and Kitchen Pod Coffee Maker (2 models) * 

Drip Coffee Maker 

Induction Hot Plate 

Rice Cooker * 

Electric Kettle 

Hot Pot (hot water dispenser) 

Stand Mixer 

Illumination LED Smart Bulb 

LED Luminary 

IT and Connectivity Mesh Network Router 

Network Router 

Health and Security IoT Hub System 

IoT Plug Meter/Switch 

Adjustable Bed 

White Noise Generator 

Electric Fan, Heater 

Electric Blanket 

Portable Heat Pump/ Dehumidifier 

Smart Speaker 

Transportation Electric Vehicle Charger (EVSE) 

Automotive Battery Maintainer 

* Items underwent device use profile testing. 
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DEVICE STATES 

From the device list and categorization, each device was tested to establish every state it 

entered in response to various actions (for example, being activated, being used in certain 

ways, or being left idle for a certain period) and the power draw during each state. Some of 

these states were static in terms of power draw, while other states varied (for example, 

warm-up cycles). Determination of operational logic made for the most commonly-used 

functions was evaluated and mapped with respect to state order and time. The possible PM 

options were also assessed at this point, such as auto-shutoff timers, sleep mode timers, 

and auto stops, as well as their effect on transitioning to other states and power draw.  

 

On the device side, inspecting each device allowed us to divide common operation into a 

sequence of possible action states (determination of the operational logic). Power, rather 

than specific user actions, was used to define a specific state in the time-state-power 

mapping. For example, on many DVD players, a state of playing versus paused has no 

effective energy usage difference; but in a paused state, after an elapsed period of time, 

power-saving features may be activated. In this case, a single state for “play” and “paused” 

would be noted, with a caveat for activating PM functions.  

 

Each “static” state should be defined as a logical user action – for example, “play a DVD,” 

“hold at DVD menu,” etc. However, there are specific actions the DVD player must do for 

each logical action (for example, “play the disc”) including spinning it up, seeking the laser 

head, and then buffering and playing. This combination of actions is considered a composite 

static state. Each of the listed states are identified as static or transient. A “static” state 

occurs during a process with any action averaged in that period. A “transient” state is a 

short-term device action that transitions devices between states – for instance, heating 

water to a desired temperature, or a series of transitions required to shut down a machine.  

 

For ease of use, these transient states are combined with other transient or static states 

into a single, reproducible action, with energy measures that reflect the total energy used 

during the process. These device actions compose transient states to a logical user action. 

When determining device states, an independently-linked chain of states is used, whereby 

each state should form a divergence from a steady or null state (holding condition) and not 

be linked to another state or series of states, when at all possible. This approach shares 

some aspects to Markov chains (used to decisively describe a process) as states in that each 

linked state (when possible) is an independently defined entity independent of other entities 

prior to the previously-active state.  

 

One exception may be a sequence, such as a boot-up or pre-heating required to bring a 

system to a steady state, at which the other device states may be acted on logically. The 

independent-state condition is typically maintained, but may be unenforceable on individual, 

singular states in specific scenarios where logical, linked states are required to describe a 

user action (for example, a coffee maker’s “clean” mode may only be active during warmup, 

as an extension of the warmup process). In this case, the defined state should encompass 

the linked actions as a group, as opposed to the individual state. The noted exception is any 

state required to enter the steady state, or a null state (holding condition). In practice, few 

exceptions to the Markov approach applied on a per-state basis are typically necessary, and 

cases where this is required are usually rare when judiciously considered.  

 

Typically, transient states should be as granular as possible. At times, measurement may 

require divergence from protocols, or short samples averaged over multiple periods. 

Transient states with particularly-divergent measurement requirements should have this 

information noted. Some transient states are composed of actions that are not apparent to 

the user. For example, in a heater, the act of driving a heating element may also 
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incorporate artifacts of other processes currently active, such as the operation of a fan. In 

other cases, multiple actions may happen together in temporally tight sequences, or have a 

low apparent power signature compared to background processes. For example, the various 

states that a DVD player must go through to play a disc are potentially each transient 

states, but characterization of each may be too difficult and provide too little modeling 

benefit to be worth the exercise.  

 

Testing should be conducted under different conditions, to build device operation intuition 

for separating states as best as possible, and to denote any observed concurrent actions in 

the descriptions of transient states. Specific transient states were recorded, but not used in 

the evaluation. Only static states, classified in name by a state designator combined with a 

specific descriptor, were used in constructing profiles. The state designator was used to 

identify if the device was in a major state, such as “soft off,” “active,” or “standby,” while 

the sub designator specifies the current action or status under this state. Further state 

details are found in each state description. 

 

In some devices, initial conditions have a profound impact on energy use or action 

sequencing. For example, a hot pot water heater filled only halfway to capacity will take 

longer and require more energy to heat up to a common set point by simple 

thermodynamics. Similarly, a hot pot water heater filled with water above ambient 

temperature will heat up to the set point faster compared to water at ambient temperature, 

while changes in ambient temperature may have an impact on the energy required to raise 

and maintain the water temperature (Klopfer, Xia, Pixley, Rapier, & Li, 2017). The 

recommendation is to use the most common representative parameters as possible as a 

starting point, and measure device energy use to model any set of specific initial conditions 

desired. In the current evaluation, 22˚C (ambient temperature) was used as a common 

cycling water temperature, as a starting point for heating. 

 

Delineation of static states may be more of an art than an adherence to hard-and-fast rules, 

but considering guidelines, the result energy calculation result will ultimately be the same. 

Typically, one would examine whether a substantial energy usage difference exists between 

unconnected user actions. In a composite state, if multiple pathways exist, consider 

breaking it down into multiple states. If different states have indistinguishable energy 

consumption but the states are logically connected (for example, “play” and “pause” on a 

DVD player) they can be combined to a common state. The use of a student’s two-tailed t-

test with a p<0.01 can be used as a distinguishing energy consumption factor. If the null 

hypothesis is not disproven, the two readings are considered non-indistinguishable, and the 

states are combined in the action model.  

 

These guidelines are applied in an illustrative example of a state-mapping narrative for a 4K 

TV. Table 3 provides an example of the fields of the database XML file showing various 

states that a high-definition TV may cycle through, and how each state varies by power, 

power factor, and Total Harmonic Distortion of Current (THDi).  
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TABLE 3. EXAMPLE 4K TV STATE LIST DATA  

State 
# 

State Name 
State 

Description 
State 
Type 

Power (W) Power Factor THDi 

Mean 
Std 
Dev 

Median Mean 
Std 
Dev 

Median Mean 
Std 
Dev 

Median 

1 
Active-

BlankScreen 
TV in active with 

blank black screen. 
Static 160.56 1.12 161.25 0.979 0.01 0.979 33.57 1.10 33.26 

2 Active-Bootup 
TV in 30 

second bootup 
Static 63.1 2.14 63.20 0.793 0.02 0.790 25.14 2.10 25.20 

3 
Active-

DynamicImage 
SettingVideo 

TV with default 
settings 

showing active 
video 

Static 173.53 2.89 173.22 0.972 0.02 0.972 33.57 1.10 33.26 

4 
Active-

SMPTEBarsStaticI
mage 

TV showing 
static SMPTE 
HD bars from 
generator in 

default settings 

Static 153.53 2.99 153.21 0.972 0.02 0.972 33.57 1.10 33.26 

5 

Active-
StandardPicture 
ExtraBrightSettin

gWithVideo 

TV showing 
images with 

brightness up 
Static 156.21 3.79 157.21 0.972 0.02 0.972 33.57 1.10 33.26 

6 
Active-

StandardPicture
ModeBlueScreen 

TV displaying 
static blue 
screen, no 

input 

Static 164.27 3.15 162.32 0.972 0.02 0.972 33.57 1.10 33.26 

7 
Active-

StandardPicture 
StaticImage 

TV displaying 
static image 

content 
Static 135.25 2.99 135.20 0.972 0.02 0.972 33.57 1.10 33.26 

8 SoftOff 

TV 
immediately 

past boot-up in 
On state, black 

screen, no 
content 

Static 0.115 0.002 0.115 0.028 0.002 0.0025 33.57 1.10 33.26 

 

Extending beyond the current project scope, the application of Markov chain theory in future 

versions of PLSim can provide clustered states based on the probability of transitioning 

states, with respect to duration, to provide a Monte Carlo-style simulation (Monte Carlo 

Markov Chain Simulation) of event chains. This creates a statistically-determined profile set 

that can be used for further analysis. Currently, defined static state chains with set 

durations are used in analysis. 

DEVICE USAGE  

When developing the simulated behavioral profiles, CalPlug investigated three aspects of 

device usage that would affect energy consumption: 

 

1. How much the device is used per day (Active) 

2. The timing or pattern of that usage (Pattern) 

3. What PM settings or user behaviors affect efficient use (PM) 

For each aspect, at least three levels are defined: usually low, moderate, and high. Each 

device is assessed separately for how each aspect applies to it. For example, amount of use 
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was approached differently depending on whether devices are more productively seen as 

used on a duration basis (number of hours) or as a frequency (number of times).  

 

The majority of plug load devices included in the SIM Home are used on a duration basis. 

For instance, TVs are watched for some number of hours per day. For these devices, we 

examine not only average use but also distribution of use. In the results presented below, 

we cover the full range of use reported in these studies.  

 

Testing focused on very low and very heavy use, defined as the 10th and 90th percentiles, 

compared to moderate use, defined as the median. In some studies, survey questions about 

use employ response categories rather than a continuous measure; in these cases, the 

midpoint of the category is used to calculate the distribution of use. For instance, a category 

of "one to three hours" is recorded as two hours for all survey respondents who chose that 

category. This necessarily results in less precision than continuous measures, and may 

explain some of the variation across surveys. However, the point of the current analyses is 

not to ascertain hourly usage of devices to an exact degree, but to better understand the 

real-life range of behaviors. As such, even these approximate measures offer a sufficient 

basis for estimating likely device use profiles.  

 

Other devices are used on a frequency basis. For example, a pod coffee maker is used some 

number of times per day. Here, testing focused on the behavioral variations that are 

logically reasonable for that device, utilizing study data whenever possible. To complicate 

matters, some frequently-used devices also incorporate an element of duration – for 

instance, making two cups of coffee rather than ten, using a warming plate for ten minutes 

versus an hour, or printing a longer versus shorter document. The testing profiles for these 

devices were modified to fit, but were kept as close as possible to the testing plan followed 

for most devices. 

 

Whenever available, ENERGY STAR testing estimates for amount of active use established 

the moderate or standard level. In the previous SIM Home report, survey data on how 

devices were used in homes was analyzed to determine the reasonable range of use 

amount. Specifically, the median was used for "moderate" active use, while the 10th 

percentile was considered "low" usage and the 90th percentile was considered "high" usage.  

 

The same data sources were used here as were discussed earlier for the frequency of device 

ownership – please see the first SIM Home report for more detail (Xia et al., 2017). As 

before, updated information from the RECS 2015 study was sought, and again, the results 

did not change (see Appendix A). Unfortunately, RECS 2015 did not provide the same data 

on computer usage that was available for RECS 2009, due to changes in data collection 

methodology. Additional updated data sources were sought for all devices on frequency and 

pattern of use, but no new results could be located, so the same figures were applied. 

 

Use spacing may also vary over time. For instance, four hours of computer use may occur 

all in one sitting, or may be divided into shorter periods. Many devices incur transition costs, 

such as warm-up or cool-down times, or may idle prior to entering sleep or standby mode. 

For a given duration of use, the number of periods throughout the day can also affect 

energy usage. Testing also incorporated the same duration split into two or more periods, to 

examine where energy inefficiencies may occur.  

 

A similar approach was taken for frequency devices, testing how energy costs differ when 

use happens in a short period versus being spread throughout the day. The number of 

periods were set at low, moderate, and high, which typically corresponded to one, two, or 

many periods over the course of the day (the exact number for "many" will vary by what a 

reasonable single use of each device might be). The definition also specified the amount of 
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time between usage periods, and took into consideration the possible PM settings. For 

instance, if the lowest delay for a device's sleep setting is one hour, testing two patterns 

that both leave the device idle less than one hour will not result in exposing much variation.  

 

The PM aspect involves what state the device is in when it is not being used. This includes a 

combination of two factors: (1) whether automatic PM settings are enabled and if so, at 

what delay setting; and (2) whether the user turns the device off when finished or not. 

Some devices may stay on and idle if they are not turned off, while others automatically 

transition to a low-power mode, or off.  

 

User behavior can vary both in terms of whether they manually turn the devices off and 

whether they enable, disable, or otherwise change any automatic low-power settings. 

Conceptually, high PM is where the user turns the device off regularly when it is not used 

and/or engages any automatic PM settings at high levels; moderate PM is where the user 

does not act, but the device is set at the automatic factory settings for transitioning off or to 

sleep mode when not used; and low PM is where any automatic PM features are disabled (if 

possible) and the user never turns the device off. Some devices had multiple PM options 

and were given more than one level of moderate or high PM. These levels are not intended 

to exhaustively cover all possibilities, but to represent realistically high and low levels of PM 

behavior, to contrast with a standard or moderate level. 

 

Some usage profiles, especially in combinations of long active use and multiple periods 

throughout the day, may seem unrealistic to the average person. However, these profiles 

represent device usage under less-common but still valid circumstances. For instance, 

people who are retired, unemployed, or disabled may reasonably watch substantially more 

TV than the average working adult. It is also important to remember that these are profiles 

for the devices, not the individual users. Households with multiple adults working different 

shifts may reasonably take turns using coffee makers, computers, or game consoles both 

day and night. Likewise, children may use entertainment devices early in the day while 

adults use them later in the evening. 

 

Although the levels of each of aspect were based on empirical research as much as possible, 

there is little data available on the range of active usage of most of these devices, and even 

less is available on how people time their usage or what PM features they employ. In the 

absence of survey or observational data on real-life active usage amounts, estimates were 

made based on similar devices or on assumptions. It should be emphasized that the 

reliability of the results depends entirely on the extent to which these assumptions are 

realistically reflective of user behavior toward these devices. To that end, the defined aspect 

levels are given in sufficient detail for the reader to examine and assess. 

 

The three aspect choices were not intended to cover every possible behavior, but represent 

a reasonable range of scenarios in terms of energy savings compared to an average.  

DEVICE USAGE PROFILES 

The device usage profile set includes all possible combinations of the levels of the three 

aspects that are logically possible, as defined for that specific device. If there are three 

levels of each aspect, and all of them can be combined, the result is 27 profiles for that 

device. If additional levels of pattern or PM have been defined to more adequately address 

functionality for that device, more than 27 profiles will be produced. A generic device use 

profile is shown in Table 4. As a practical matter, some of these combinations were skipped 

for certain devices. For example, for especially low active use durations, multiple periods 

(moderate or high for pattern) may not be reasonable. 
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TABLE 4. POSSIBLE COMBINATIONS OF DEVICE USE ASPECTS 

  Aspects  

Profile  
Number 

Active  
Use 

Pattern/ 
Times PM 

1 Low Low Low 

2 Low Low Moderate 

3 Low Low High 

4 Low Moderate Low 

5 Low Moderate Moderate 

6 Low Moderate High 

7 Low High Low 

8 Low High Moderate 

9 Low High High 

10 Moderate Low Low 

11 Moderate Low Moderate 

12 Moderate Low High 

13 Moderate Moderate Low 

14 Moderate Moderate Moderate 

15 Moderate Moderate High 

16 Moderate High Low 

17 Moderate High Moderate 

18 Moderate High High 

19 High Low Low 

20 High Low Moderate 

21 High Low High 

22 High Moderate Low 

23 High Moderate Moderate 

24 High Moderate High 

25 High High Low 

26 High High Moderate 

27 High High High 

 

In the next section of this document, each device’s use profiles are detailed in their 

respective settings. Since devices may have more than three levels of each aspect (for 

example, a moderate-1 and moderate-2 pattern level) and also vary in their possible 

combinations, numbers assigned to each profile differ across devices. To facilitate discussing 

profiles, a shorthand is used to list each level in the order shown above: for instance, "Mod-

Low-High" would be the profile that is moderate for active use, low for pattern or number of 

times, and high for PM. In analysis, comparing the variation of each of the states of these 

three categories, a multivariate analysis can provide information about the “impact” of that 

particular effect on device total energy usage. In addition to linear multivariate regression, a 

DBSCAN graphical analysis in Mathworks Matlab was used to compare clustering in 

preliminary visualization for results screening during the reporting process. 
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CALCULATING ENERGY CONSUMPTION 

PLSIM 1.2 

Two open-source simulation tools were developed in support of this project: MISER and 

PLSim. MISER is used to rapidly tabulate energy usage based on device states as modeled 

through the profiles. Device testing was used to verify state and general usage along with 

total energy consumption. The state model was developed and verified against the actual 

device using a modeled usage plan to verify the developed state mode. This tool is universal 

for all modeled devices, and was the primary energy modeling tool used in this work. 

 

A per-device, state-wise energy usage XML database (seen in Figure 4) is generated by 

testing device operation per the aforementioned testing approaches. This database provides 

a list of states. A developed time-based (temporal) profile maps the time the device spends 

during a particular period for a given action to energy usage. This is either entered directly 

or as a CSV file as a simplified input method. A diagram of PLSim is shown in Figure 5. 
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FIGURE 4. GENERAL STRUCTURE OF THE DEVICE-STATE XML-BASED DATABASE USED FOR PLSIM 
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FIGURE 5. FLOW DIAGRAM FOR THE  OPERATION OF PLSIM 

Source: CalPlug, FlatIcon  

 

PLSim is developed in Python 3.6 and can be run from Eclipse Java IDE (tested in 

Photon/2018 version) using Miniconda3 as an Eclipse Python interpreter. Configuration and 

operation details can be found in the project GitHub repository. Energy data is calculated on 

a state-wise basis for time over the period of one 24-hour analysis period. Energy usage can 

be interpreted universally, or with respect to the lowest state. In a universal sense, total 

energy usage is compared to either first principles of device operation or equivalent devices 

as a context for interpretation. This approach is often used when the fundamental device 

design is to be discussed, including the power supply or standby load.  

 

Universal framework is commonly used when interpreting pre-post study results referencing 

baselines. Alternatively, the lowest-state reference uses the device in its lowest possible 

state to show a reference case, and a totally-unused device in its lowest power state. 

Comparative savings can be due to usage changes (changes in utility) or energy 

consumption changes without total utility reduction (changes in efficiency). The lowest-state 

reference is often used as a contextual framework to interpret the behavioral aspects of 

usage due to changes in device energy usage (either due to utility or efficiency changes). 

Daily energy usage is calculated as a temporal combination of all event states during a 24-

hour period (see Equation 1). In this relationship, PSl is used to model the lowest energy 

usage state (assumed to be the lowest-power modeled state) while Nx, Px, Tx, are used to 

model the average power consumption and number of periods a state exists during a 24-

hour period.  
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EQUATION 1. CALCULATION OF DAILY ENERGY USAGE BASED ON GENERIC EVENT FREQUENCY AND CLASSIFICATION 

 
𝑆ℎ𝑜𝑤𝑛 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑒𝑙𝑦 𝑤𝑖𝑡ℎ 𝑡𝑤𝑜 𝑡𝑒𝑟𝑚𝑠: 

 

𝐸𝐶 =
𝑃𝑙(24 − ((𝑁1𝑇1) + (𝑁2𝑇2)) + (𝑃1(𝑁1𝑇1) + 𝑃2(𝑁2𝑇2))

1000
 

Where: 

Variable Value 

EC Daily energy consumption in kWh for the modeled system. 

NX(shown: 1,2) Average number of events of a particular event of a given duration that occurs in a 24-

hour period: the value for x increments for each event.  

TX(shown: 1,2) Average duration (in hours) for a particular event which occurs in the 24-hour period: 

the value for x increments for each event. 

PX (shown: 1,2) Average power consumption (in watts) for a particular event which occurs in the 24-

hour period: the value for x increments for each event. 

𝑃𝑙  Average power consumption (in watts) for the lowest power operational mode, such as 

soft-off, sleep mode, or standby mode. 

 

In this formula presentation, the inactive mode is the default case, and activities interrupt a 

24-hour period of sleep to modify energy consumption during specific event periods. 

 

An example of the PLSim XML database for devices and corresponding states is shown in 

Figure 4. A hierarchical tree structure is used to describe devices under a categorical 

classification. Within each device, a set of states is defined. In PLSim 1.2, only “static” 

states are used for modeling energy states. Where available, median and standard deviation 

values are provided for power, power factor, and measured THDi quantities.  

 

PLSim 1.2 provides the ability to calculate bands of energy usage corresponding to +/- 1 

standard deviation, with respect to the average term for each measured quantity. This 

provides a quickly-defined band for potential energy usage. Confidence intervals and other 

statistical discrimination factors could be used given the evaluation period sample length, 

but this adds to complications related to data interpretation (especially between changing 

states) without providing substantial added benefit to merit the effort in current usage. In 

the current study, Power Factor and THDi are not interpreted from PLSim results. Both 

measurements can be used to assess power quality related to devices. In future 

developments, such information may help model areas of concern for simultaneously-

operating devices related to power quality. 

 

The current dataset analyzed in this report is available as a sample for PLSim as a work 

product and is publicly available from the project Github repository.  
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MISER 

MISER is another open-source tool developed by CalPlug. Similar to PLSim, MISER was also 

developed in Python 3.6 and can be run from Eclipse Java IDE (tested in the Photon/2018 

version) using Miniconda3 as an Eclipse Python interpreter. MISER is used to calculate 

changes in marginal energy usage for personal computers as an effect of changing PM 

settings. In this evaluation, MISER is only applicable to timed PM schemes, and was only 

used for modeling desktop computer automatic sleep settings. 

 

This tool specifically uses field test data for time spent in states of operation, and can be 

used to calculate energy savings potential by adjusting settings for power-saving states. A 

classic use of this tool is for desktop computers (Klopfer et al., 2019). Using known settings 

and energy usage for field trials, adjusted PM settings can be modeled to provide a 

difference in energy usage due to setting changes. Sleep-blocking events (failures to enter 

sleep), either legitimate (for example, through a program purposely preventing initiation of 

sleep) or unintentional can be estimated.  

 

MISER modeled computer energy usage due to changes in PM settings using the 115 person 

CalPlug desktop Monitoring Study as a reference data set, but with the operational states 

modeled from testing (Pixley & Ross, 2014). An important caveat is that the original 

Monitoring Study state data was reported in 15-minute blocks – in each block, the software 

indicated how many minutes the computer spent off, in sleep mode, on but actively being 

used, or idle (on but not being used). As such, it was not possible to definitively assess the 

length of short idle periods.  

 

A pattern-matching approach was used to mitigate the impact of periods carrying between 

multiple blocks from being interpreted as multiple shorter periods. Some specific patterns 

are easy to identify – for example, when a block includes idle and sleep time, the idle time 

precedes the sleep time, and the sleep time carries over to the next block. Various 

strategies were used to estimate likely patterns of states within blocks; this is explained in 

more detail in Klopfer et al. (2019). The power of this tool is limited by the working dataset 

and any shortcomings in its fidelity or representation.  

 

The utility allows the selective summarization of state data from the study (passive 

analysis). It also uses daily state-time data to simulate alterative usage scenarios based on 

changed settings (active analysis). The Monitoring Study’s state-time information can be 

used to provide a snapshot of general office desktop computer usage. Based on the state 

periods for all 115 study machines presented in Table 5, and the PM settings presented in 

Figure 6, the average computer is in an idle state more than 50% of the time. Monitor sleep 

(screen blanking) is common; true computer sleep is less common. These findings were 

confirmed with the 2017 follow up to the Monitoring Study. These summarized results are 

presented in Figure 7.  
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TABLE 5. THE TIME SPENT IN EACH STATE FOR THE 115 OBSERVED OFFICE DESKTOPS IN THE MONITORING STUDY WITH SUB 

STATES SHOWN 

 Weekday Average Weekend Average Overall Average 

Computer State Percent s.d. Percent s.d. Percent s.d. 

On 77.7% 31.0% 68.7% 41.7% 75.1% 34.6% 

    User active 13.2% 7.4% 1.0% 3.3% 9.7% 8.5% 

    User Idle 64.0% 31.3% 66.3% 42.4% 64.6% 34.9% 

    User Unknown 0.5% 3.6% 1.5% 2.3% 0.8% 1.8% 

Sleep 8.2% 20.0% 6.9% 21.8% 7.8% 20.6% 

Off 11.8% 22.3% 21.0% 36.1% 14.4% 27.3% 

Unknown 2.2% 10.1% 3.4% 14.0% 2.64 11.4% 

 

 

 

FIGURE 6. PREVALENCE OF ENABLED SETTINGS FOR MACINTOSH (OSX) AND WINDOWS COMPUTERS IN THE MONITORING 

STUDY. 

 

Delay setting distributions for computer sleep and display sleep are shown in graphical form 

in Figure 7, emphasizing the prevalence of settings at 30 minutes and, for display only, 10 

minutes. Display sleep settings are substantially more likely to be enabled than computer 

sleep settings. This is an important point of consideration for Tier 1 Advanced Power Strip 

(APS) usage linked to display-state triggering. 
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FIGURE 7. OBSERVED SLEEP SETTINGS FOR UNIVERSITY OFFICE DESKTOPS FROM CALPLUG PMUI STUDY 

Source: Pixley, Gago-Masague, and Fallman (2018) 
 

MISER enables actively evaluating computers and using different PM settings to model 

potential savings. Effectively, the results are presented as active time that could be 

converted to sleep. This delta value is considered savings, and can be applied to a baseline 

usage figure. 

 

While MISER helps model energy usage for workstation computers, there are several 

substantial concerns. The Monitoring Study dataset observed office desktop computers, so 

the results are not necessarily applicable to residential desktop computers or laptops.  

 

Additionally, MISER uses perfectly-simulated PM activation. In their Power Management 

User Interface (PMUI) Study, CalPlug further investigated the impact of “sleep blocking” 

events and determined they could have a substantial impact on how computers transition to 

sleep states. For example, a browser tab containing an active video could prevent the 

computer from entering the sleep state at its normal idle period. Because this event is very 

situationally specific, added logic and a better field understanding of the prevalence of this 

type of event is necessary to incorporate this modeling capability into MISER. Residential 

laptops also create a complicated energy usage scenario. Unlike in offices, where laptops 

are often docked or plugged in during daily use, home laptops are used in various locations 

and are charged at non-corresponding times.  

 

While MISER sheds some light on the impact of the energy used by desktops, as well as 

laptops that are used in a similar manner to desktops (continually plugged in, never 

charging), substantial aspects are modeled in a way that may not be directly representative 

of residential computer use scenarios. Accordingly, the authors present MISER data 

alongside the conventional methods used through the other evaluated device categories to 

provide an additional category energy usage reference. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

never 5 10 15 20 25 30 45 60 120 180 240

Sleep Settings (minutes)

Computer

Display



SIM Home Extended Testing  ET17SCE1190 

California Plug Load Research Center  Page 42 

September 2019 

MULTIVARIATE REGRESSION ANALYSIS 
Regression is a statistical method for modeling the relationship between a dependent 

variable (outcome) and one or more independent variables (predictors). In the current 

analyses, we focus on two results made possible by regression analyses. First, we examine 

the estimated effect on energy consumption for a given device of each aspect level relative 

to other levels of that aspect (for example, high active use versus moderate active use). 

Second, we compare the amount of variance in energy consumption explained by the three 

different aspects (for example, whether different levels of PM matter more for energy 

consumption than for total amount of active use).  

The basic linear regression equation is shown in Equation 2: 

EQUATION 2. ORDINARY LEAST SQUARES REGRESSION 

Yi =  + 1X1i + 2X2i + … NXNi +i 

Where: 

 

In the current analyses, the dependent variable is the calculated amount of daily energy 

consumption (in Wh) used for each usage profile i. The independent variables represent the 

level for each of the three aspects (active use, pattern of use, and PM) in each behavior 

profile. For each aspect, the possible levels were coded as a set of dummy variables (0 or 

1). Each usage profile for each device would have a value of 1 for the level of aspect it 

represents, and a value of 0 for all other options. For instance, Device A (a laptop 

computer) has three possible levels for active (low, moderate, and high). Usage profile A-22 

is “high” for active, so the variable “active-high” would equal 1, while the variables “active-

low” and “active-moderate” would equal 0.  

 

The regression equations were run as a series of nested models, first predicting energy 

consumption using each usage profile aspect by itself, then incorporating all the aspects into 

the final, full model. When a single concept (for example, active aspect) is represented by a 

set of two or more dummy variables (such that every case has a value of 1 for only one 

dummy variable) one of these variables must be omitted as the referent (or comparison 

case) in a regression equation. For instance, the model regressing energy consumption for 

Device A on the active aspect is shown in Equation 3.  

 

The variable for active-moderate is omitted, and the coefficients for active-low and active-

high are interpreted as the direction and size of the effect of “low versus moderate” and 

“high versus moderate,” assuming the coefficients are statistically significant. Using the 

moderate level of each aspect is a conservative choice, forcing the differences across 

profiles to vary from the average or medium; differences between the highest and lowest 

extremes would have to be tested separately.  

Variable Value 

Yi Dependent variable 

 Intercept term   

x 
Coefficient representing the estimated independent effect of its associated independent variable, 
net of the other variables in the model 

Xxi Independent variable predicting Y 

i Error term 
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EQUATION 3. EXAMPLE OF REGRESSION OF ENERGY CONSUMPTION ON ACTIVE ASPECT VARIABLES 

ECi =  + 1*Active-lowi + 2*Active-highi +i 

 

 

The equations differ by device because usage profiles differ on the number and types of 

levels within each aspect. For instance, Device A has five levels of the pattern aspect (low, 

moderate-1, moderate-2, high-1 and high-2) whereas Device C has only three (low, 

moderate, and high). When there is more than one moderate level of an aspect, moderate-1 

is chosen as the omitted category.  

 

A regression model produces a statistic called R-squared (R2), which is the proportion of the 

variance in the dependent variable that is explained by the model.  

  

Accordingly, the impact of a particular category of modeled behavior (time of use, PM 

setting, or cycles of operation) can be analyzed to identify if it is statistically significant (set 

at α=0.05). Accordingly, based on how a category is formed for a given device, the impact 

of these corresponding actions can be assessed for their effect on energy usage. 

Multivariate analyses were performed using the SAS 9.4 statistical suite. 
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RESULTS 
The device evaluation results are presented in two parts. The first section provides 

simulation results for the energy consumed by each plug load device and how it differs by 

profile. The second section presents the multivariate analyses that tested the relative 

impact of each of the three aspects – active use amount, pattern of use, and PM – on the 

profiles’ energy consumption.  

PLUG LOAD DEVICE ENERGY EVALUATIONS 
Devices are grouped into three categories: entertainment devices, computers, and kitchen 

equipment. Details of the device categories and corresponding devices are presented within 

each subsection. 

 

First, for each device, definitions of the three usage aspects are identified. As explained 

earlier, whenever possible, the number of hours or times given for the active use aspect is 

based on existing data and/or ENERGY STAR protocols. Moderate usage is defined as the 

real-life testing standard or median of reported usage, and low and high usage is defined as 

the 10th and 90th percentile of reported usage.  

 

Likewise, the moderate PM option describes the default state of the device's power-saving 

features, along with an estimation of likely average user behavior. The research team 

developed the other category definitions based on what were considered reasonable user 

behavior assumptions. It should be noted that the energy usage results rely heavily on 

accepting these assumptions; alternate definitions would produce at least slightly-different 

projections. 

 

A set of device use profiles was then constructed by starting with all possible combinations 

of the three aspect levels, then eliminating those that were not possible or logical. There are 

two reasons why aspect combinations would be eliminated. First, some combinations of 

active use and pattern would add up to more than 24 hours, due to the number and lengths 

of idle periods between active use periods. Second, some active use times are short enough 

that they become unreasonably small when divided into the number of periods in a pattern. 

This is device-specific – for instance, while someone might wake their computer to check 

email for only a few minutes, it is unlikely that users would watch TV for less than 30 

minutes at a stretch. 

 

If a feature or setting is not mentioned in the aspect descriptions, it is set at the factory 

standard and held constant for all tests (e.g., brightness setting). 

 

The resulting set of device use profiles was then programmed into CalPlug’s PLSim tool. 

Entering power consumption data from in-house device testing (in all possible states) into 

PLSim produced the total simulated energy consumption for each profile. These results are 

presented and discussed in this section to show how energy consumption varies across all 

the device use profiles included here. For comparison, lower and upper boundaries are also 

modeled, showing energy consumption if the device remained in the lowest or highest 

usage state possible for 24 hours.  
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ENTERTAINMENT DEVICES 

The entertainment devices modeled here include TVs, set-top boxes, video game consoles, 

streaming devices, and sound systems. Despite belonging to a common category, these 

devices have substantial operational differences. 

4K TV 
The tested device is a 4K TV with a 50-inch screen. This Ultra-High Definition (UHD) model 

is called 4K because it is capable of 3840 x 2160 pixels, which is four times the pixel 

resolution and two times the line resolution of a 1080 HDTV at a 120 Hz screen refresh rate. 

The tested device provides two types of onboard automatic PM.  

 

“No signal power off” turns the TV off (soft-off) after no signal has been received from the 

connected source for a set period of time. The default setting is a 15-minute delay; this can 

be disabled by the user, or changed to 30 or 60 minutes. “Auto power off” turns the TV off 

(soft-off) after receiving no input from the user (via the remote control) for a set period of 

time. By default, this function is set to never; the user can choose a delay period of four, 

six, or eight hours.  

 

This model also includes a sleep timer option that allows the user to fall asleep with the TV 

on without leaving it on all night; it turns the TV off after a set delay time, from 30 minutes 

to up to three hours (with 30-minute increments). The sleep timer resets to “off” after each 

use and should not be confused with the two automatic settings, which remain in effect 

unless disabled. There are also several settings related to brightness control. Tests for this 

device were conducted with the auto-brightness (ECO Sensor) control turned off, consistent 

with ENERGY STAR protocol.  

 

In comparison to HDTVs, on average, energy consumption is substantially higher for 4K 

TVs, due to increased pixel counts and higher brightness of individual pixels to produce 

substantial total screen brightness with tighter-pitched pixel arrays.  

 

Device Usage Behavior Model 

The definitions of the three aspects constructed for 4K TVs are shown in Table 6. Survey 

data shows a large range of usage for TVs, and those results constructed the active use 

categories in the original SIM Home analyses. Since that report, the results were updated 

with the 2015 RECS study. Because the results were identical (see Table A8), the same 

active-use definitions (based on median, 10th percentile, and 90th percentile) were used in 

the current study. 

 

The moderate PM definition uses the default settings, with the "no signal power off" feature 

enabled and set at 15 minutes, and the auto-off setting disabled. The lowest (most energy-

wasting) PM behavior reflects those households where the TV is left on in the other room 

even when nobody is watching it, so it stays on for most of the day. This may seem like 

extreme usage, but anecdotally, such households clearly exist, and the PM setting is similar 

to those for other devices included in this report, which users leave on when they are not 

being used.  

 

An interim (Low-2) PM definition has the auto-off feature set at its most energy-efficient 

delay (four hours) with the TV left on. In this version, the "no signal power off" feature is 

disabled, but the same outcomes would be observed if that feature were enabled but no 

external input were used. Note that for the high-PM definition, enabled settings do not 

matter for the current calculations (although they would have some effect in the long run, 

as even conscientious users can occasionally forget to turn off the TV).  
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TABLE 6. 4K TV PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  13 hours 

Pattern 

 Low  1 period 

 Moderate-1 2 periods, 5 hours between 

 Moderate-2 2 periods, 1 hour between 

 High-1 4 periods, 5 hours between 

 High-2 4 periods, 1 hours between 

PM 

 Low-1 No signal power off and auto-off disabled; user leaves on after use, 
leaves on when they go to sleep but without sleep timer (add 8 hours at 
end) 

 Low-2 No signal power off disabled; auto-off set for 4 hours; user leaves on 
after use (either leaves input on or not using external input) 

 Moderate  No signal power off set to 15 minutes (default), auto-power off disabled 
(default); user shuts off input after use but leaves TV on 

 High  Default settings; user turns off after each use 

 

The set of device use profiles is comprised of the combinations of these aspects that are 

logically and practically possible. An example of this first device is shown in Table 7. As 

described above, there are two reasons for why a particular aspect combination might not 

be an appropriate device use profile, and both are true for this device. First, some 

combinations of active use and pattern would add up to more than 24 hours. This is the 

case with high active use combined with the high-1 pattern, which would result in four 

periods of three hours each, with three interim periods of five hours each, adding up to 24 

hours or more with no break (that is, non-active use) between the last active period of one 

day and the first active period of the next.  

 

Second, some use periods are too short to be realistic. Because this decision is subjective, 

the research team erred on the side of inclusion rather than exclusion. For TVs, the 

combination of low active use with either of the high patterns resulted in four active periods 

of 7.5 minutes each. Although this would admittedly be unusual viewing behavior, the 

research team determined that it was no more extreme than 13 hours of continuous active 

use, so these profiles were retained.  

 

For every device, one profile is designated to represent or approximate the standard testing 

protocol. For many, this combines active-moderate (the median level of active use), 

pattern-low (all the usage in a single period), and PM-high or moderate. In the case of TVs, 

the PM level used for the standard profile is high, reflecting the fact that standardized 

energy consumption testing does not assume leaving the device on and waiting for it to 

automatically transition to sleep mode. 
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TABLE 7. PROFILE COMBINATIONS OF DEVICE USE ASPECTS FOR 4K TV 

  Aspects  

Profile Number Active Use Pattern/Times PM 

1 Low Low Low-1 

2 Low Low Low-2 

3 Low Low Mod 

4 Low Low High 

5 Low Mod-1 Low-1 

6 Low Mod-1 Low-2 

7 Low Mod-1 Mod 

8 Low Mod-1 High 

9 Low Mod-2 Low-1 

10 Low Mod-2 Low-2 

11 Low Mod-2 Mod 

12 Low Mod-2 High 

13 Low High-1 Low-1 

14 Low High-1 Low-2 

15 Low High-1 Mod 

16 Low High-1 High 

17 Low High-2 Low-1 

18 Low High-2 Low-2 

19 Low High-2 Mod 

20 Low High-2 High 

21 Mod Low Low-1 

22 Mod Low Low-2 

23 Mod Low Mod 

24 Mod Low High 

25 Mod Mod-1 Low-1 

26 Mod Mod-1 Low-2 

27 Mod Mod-1 Mod 

28 Mod Mod-1 High 

29 Mod Mod-2 Low-1 

30 Mod Mod-2 Low-2 

31 Mod Mod-2 Mod 

32 Mod Mod-2 High 

33 Mod High-1 Mod 

34 Mod High-1 High 

35 Mod High-2 Low-1 

36 Mod High-2 Low-2 

37 Mod High-2 Mod 

38 Mod High-2 High 

39 High Low Low-1 

40 High Low Low-2 

41 High Low Mod 

42 High Low High 

43 High Mod-1 Low-2 

44 High Mod-1 Mod 

45 High Mod-1 High 

46 High Mod-2 Low-1 

47 High Mod-2 Low-2 

48 High Mod-2 Mod 

49 High Mod-2 High 

50 High High-2 Low-2 

51 High High-2 Mod 

52 High High-2 High 
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Device Results 

A summary of PLSim results for 4K TVs is shown in Table 8. The standard device usage 

profile (#24, mod-low-high) produces a usage of 1305.13 Wh. The median energy usage 

falls between the values of profiles #22 (mod-low-low2) and #44 (high-low-high). The 

profile with the minimum usage was #4 (low-low-high) and maximum usage was a tie 

between profiles #33 (mod-high1-low1), #45 (high-mod1-low1) and #53 (high-high2-

low1), producing a large range of modeled outcomes that vary by usage.  

 

For comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated 

as 2.76 Wh, while the maximum boundary level (active power on for 24 hours) is estimated 

at 3746.71 Wh, providing reference boundaries for excessively-wasteful/longest-possible 

use (maximum usage) and non-usage. 

 

TABLE 8. 4K TV SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

4K TV 1305.13 1981.54 82.38 3746.71 3664.33 

 

Daily energy usage for each individual profile is shown in Figure 8. Profiles are shown in the 

same order as described in Table 7. This means that the first group of profiles has low 

active usage, the middle groups have moderate usage, and the last groups have higher 

usage. Within each of these groups, the low-1 PM profile comes first and the high-PM profile 

comes last (remember that “low” PM means less use of energy-saving features, which 

should result in higher energy usage than high PM).  

 

Analyzing the results in order of increasing energy impact visually reveals three main 

patterns. First, the low-1 PM profiles repeatedly show higher energy consumption than the 

low-2, while the moderate and high-PM profiles are much lower and do not differ much. 

Second, the differences between the moderate and high active usage profiles are not as 

great as those between them and the low active usage profiles. Finally, that pattern does 

not seem to have a strong effect for this device. For instance, profiles 41, 42, 43, and 44 

show the effect of PM when active usage is high and pattern is low: highest for low-1 PM, a 

little lower for low-2 PM, and much lower for mod and high PM. Almost identical results are 

seen for the next three sets of profiles, despite changing the pattern aspect. 
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FIGURE 8. 4K TV DAILY ENERGY USAGE PROFILES 
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HDTV 

The evaluated, modeled HDTV is a name-brand, 50-inch device with onboard “smart” 

capabilities to display internally sourced content. In the evaluation, all content is provided 

by an HDMI source. This TV has fewer low-power modes than the 4K model. It offers a 

feature called "auto-power-off" which functions the same as the "no signal power off" 

feature of the 4K TV; to reduce confusion, the same term is used here. This feature only has 

two options: enabled with a 10-minute delay (the default factory setting) or disabled. There 

is no feature that automatically turns the TV off in the absence of user input. A sleep timer 

is available, with possible settings of 30 minutes up to three hours. As with the 4K TV, this 

timer must be reset every time the user wishes to use it. 

Device Usage Behavior Model 

The device use profiles shown below are based on those developed for the 4K TV (see Table 

6 and Table 7). Two exceptions for this device are that the PM Low-2 definition cannot be 

used for the HDTV because the auto-off feature is not present, and that the default for the 

"no signal power off" setting is 10 minutes rather than 15 minutes. As with the 4K TV, 

possible profiles combining high active use and the high-1 pattern were excluded, because 

they exceeded 24 hours. 
 

TABLE 9. HDTV PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  13 hours 

Pattern 

 Low  1 period 

 Moderate-1 2 periods, 5 hours between 

 Moderate-2 2 periods, 1 hour between 

 High-1 4 periods, 5 hours between 

 High-2 4 periods, 1 hours between 

PM 

 Low-1 No signal power off*disabled; user leaves on after use, leaves on 
when they go to sleep but without sleep timer (add 8 hours at end) 

 Moderate  No signal power off* set to 10 minutes (default), user shuts off input 
after use but leaves TV on 

 High  Default settings, user turns off after each use 

* This feature is called "auto power off" for this model, but operates the same as "no signal power off" 
for the 4K TV. 
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Device Results 

A summary of the HDTV’s PLSim results is shown in Table 10. The standard profile (#17, 

mod-low-mod) produces usage of 687.11 Wh. Median usage falls between the values of 

profiles #7 (low-mod2-low) and #29 (mod-high2-mod). Minimum usage was #3 (low-low-

high) and maximum was a tie between profiles #25 (mod-high1-low), #34 (high-mod1-low) 

and #40 (high-high2-low). Again, this produced a large range of modeled outcomes that 

vary by usage. For comparison, the minimum boundary level (at soft-off power for 24 

hours) is estimated as 7.20 Wh, while the maximum boundary level (active power on for 24 

hours) is estimated at 1903.15 Wh. 

 

TABLE 10. HDTV SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

HDTV 687.11 743.34 48.48 1903.15 1854.67 

 

Figure 9 shows daily energy usage for each individual profile. With the exception of having 

only one low-PM level, similar patterns are seen as for the 4K TV. Specifically, moderate and 

high active usage are similar, while low active usage is much lower; low PM results in 

substantially-higher energy usage; and pattern does not have a demonstrable effect.  
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FIGURE 9. HDTV ENERGY USAGE PROFILES 
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SOUND BAR 
During testing, a major (matching) brand sound bar model was used in conjunction with the 

previously-discussed 4K TV. This device uses an optical audio link for primary audio content, 

which is sourced by the TV. An attached subwoofer is connected for low-frequency audio, 

and the power is supplied by an adapter. The device can receive audio content from various 

sources, including optical digital input, Bluetooth, TV SoundConnect, USB, or AUX input.  

 

A remote control was used to trigger automatically-synchronized “on” and “off” actions and 

demonstrate control coordination between input activity and the TV. The device has an auto 

power-down feature enabled by default, and operates differently depending on the input 

type. If the input is through AUX mode, the unit automatically switches to soft-off after five 

minutes if the AUX cable is disconnected, or turns off after eight hours if there is no key 

input and the AUX cable remains connected. For any other type of audio input, the auto 

power-down mode switches to soft-off if there is no audio signal for five minutes. The user 

can disable the auto-off feature, but there are no other delay options. The current tests 

were conducted with the TV as the audio input. All tests were run with the volume set at 

20%, or an average of about 35 decibels with audio input provided. 

 

Device Usage Behavior Model 

As with content-providing systems (such as streaming devices or satellite set-top boxes) the 

TV-connected sound bar can only operate when the TV is used. The sound bar is intended to 

provide audio output. While there may be some capability to provide audio play for 

smartphones or tablets, this is probably a secondary usage scenario. It is likely that the 

sound bar is always used with the TV, and aside from the previously-noted exceptions, 

other non-TV use would be considered wasteful. Accordingly, the TV/display profile for the 

4K TV was used as an example profile, with the same active use and pattern definitions as 

for TVs. The definitions of PM aspects are shown in Table 11.  

 

Given the same aspect definitions as for TVs, the same profiles were excluded, specifically 

those combining high active use and the high-1 pattern, due to exceeding the total number 

of hours in a day. 

 

TABLE 11. SOUND BAR PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  13 hours 

Pattern 

 Low  1 period 

 Moderate 2 periods, 1 hour between 

 High 4 periods, 1 hours between 

PM 

 Low 
User leaves on after use, device auto power down disabled, device stays in idle 
rest of day (active no sound) 

 Moderate 
User leaves on after use, device auto power down enabled, device turns off 
automatically after 5 mins of no input 

 High  User turns off after each use 
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Device Results 

Table 12 provides a summary of PLSim results for the TV sound bar. The standard profile 

(#11, mod-low-mod) produces a usage of 111.70 Wh. The median profile is #24 (high-

mod-high). The minimum profile is #9 (low-high-high) and the maximum was a tie between 

all profiles with high active use and low PM. Again, this produced a large range of modeled 

outcomes that vary by usage. For comparison, the minimum boundary level (at soft-off 

power for 24 hours) is estimated as 88.30 Wh, while the maximum boundary level (active 

power on at 100% volume for 24 hours) is estimated at 333.54 Wh (note that the maximum 

boundary level at 20% volume for 24 hours would be 198.60 Wh).  

TABLE 12. SOUND BAR SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Sound Bar 111.70 148.14 90.42 198.04 107.62 

 

Daily energy usage for each individual profile is shown in Figure 10. Profiles with low PM are 

uniformly high due to being on all day long, whereas little difference is seen across 

moderate and high-PM levels. Moderate increases are shown for higher active usages, but 

there are no differences by pattern. 

 

 

FIGURE 10. SOUND BAR ENERGY USAGE PROFILES 

SATELLITE SERVICE SET-TOP BOX 
A Digital Video Recorder (DVR) pay satellite TV service box from a major provider was used 

for evaluation. This device maintains a one-way connection from the head end, to keep 

security and content access information updated. In addition to having DVR functionality, 

the device can simultaneously record live TV and replay content by using multiple onboard 

tuners. The energy consumption of the recording features is relatively small, because the 

onboard hard disk drive is constantly active for buffering received content.  
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The device offers a standby state, during which content is not sent over device output and 

onboard LED indicators are extinguished; however, energy consumption is high in this state 

compared to other devices. This set-top box can still record content when in the standby 

state. Although it can serve content to thin client boxes, a single content source (like this 

type of box) is required for such a network to operate, which is why this particular device 

was chosen for evaluation. An auto-standby option is available where, by default, the box 

will go into power-saving standby mode after four hours of inactivity (the user can disable 

this option). In addition, there is no energy reduction when the set-top box is idle versus 

when it is showing live content, so leaving it on is the same as constant active use.  

 

Device Usage Behavior Model 

Table 13 provides definitions of three aspects constructed for satellite set-top boxes. Active 

usage and pattern aspects were based on those for TV usage. Although it is possible for 

someone to use their TV without a set-top box, the opposite is not true; therefore, for any 

given household, a set-top box may either match the TV profile or have lower active use.  

 

Given the same aspect definitions as for TVs, the same profiles were excluded, specifically 

those combining high active use and the high-1 pattern, due to exceeding the total number 

of hours in a day. 

TABLE 13. SET-TOP BOX PROFILE ASPECTS 

Aspect and Level Description 

Active use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  13 hours 

Pattern 

 Low  1 period 

 Moderate-1 2 periods, 5 hours between 

 Moderate-2 2 periods, 1 hour between 

 High-1 4 periods, 5 hours between 

 High-2 4 periods, 1 hours between 

PM 

 Low User leaves on after use, auto standby disabled 

 Moderate User leaves on after use, auto standby after 4 hours (default) idle 

 High User turns off immediately after each use 

Device Results 

A summary of PLSim results for satellite set-top boxes is shown in Table 14. The standard 

profile (#18, mod-low-high) produces usage of 669.90 Wh. Median usage falls between the 

values of profiles #11 (low-high1-mod) and #29 (mod-high2-mod). Minimum usage was a 

tie between #12 (low-high1-high) and #15 (low-high2-high). All profiles with low PM and 

high active use are tied for (or within 1 Wh of) maximum usage.  

 

The energy consumption range is relatively small across profiles, and is almost the same as 

the minimum and maximum boundary states. For comparison, the minimum boundary level 

(standby for 24 hours) is estimated as 654.00 Wh, while the maximum boundary level 
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(active, showing live content for 24 hours) is estimated at 699.72 Wh. This high minimum 

boundary reflects the fact that set-top boxes must maintain continuous connections for 

program and encryption services, so even in their lowest-power standby mode, they use 

substantial power. As a result, users are limited in how much they can affect energy savings 

on this device. Also note that the profiles tied for using the most energy use the maximum 

for this device; this is because the energy consumption is the same for leaving the device 

on and idle as it is for actively using it for 24 hours. 
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TABLE 14. SET-TOP BOX SUMMARY RESULTS 

  Standard (Wh) Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Set-Top Box 669.90 684.57 654.07 699.72 45.65 

 

Daily energy usage for each individual profile is shown in Figure 11. The pattern of results 

suggests PM is a key energy usage key factor for this device, and active usage provides only 

a slight variation. Note the figure is zoomed in for higher clarity, but the entire chart spans 

only 80 Wh. The differences shown here are small, and even the range between the most 

aggressive and least aggressive PM profiles is not large.  
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FIGURE 11. SET-TOP BOX ENERGY USAGE PROFILES 

STREAMING DEVICE 
This device is a single-box streaming system with 4K output, from a major manufacturer. It 

uses an onboard AC-to-DC converter to accept wall power directly, without the need for an 

external power supply. The device offers an automatic standby setting, which transitions the 

device into soft-off mode in the absence of video or user activity. The possible delay periods 

are: never, 15 minutes, 30 minutes, 1 hour, 5 hours, and 10 hours.  

 

The factory default setting has the standby setting enabled at 15 minutes. A connection via 

HDMI, with Consumer Electronics Control (CEC) communication enabled, can provide a 

trigger to shut down the connected TV and in some cases, other attached accessories. 

Specific CEC-triggered linked device shutdown was not explicitly investigated as part of the 

evaluation for this device. When booted up or taken out of soft-off mode, the device will 

display a menu of apps that can be selected for operation. 
 

This device’s soft-off power usage was very low at 0.22 W, although operational power 

usage was also low at 2.94 W. Through extensive testing, sleep blocking was not observed. 

All TVs tested with this streaming device could be triggered via the sent CEC commands, 

and changing inputs away from the device would cause it to power down if the standby 

setting was enabled. From our investigation, only a single standby mode (soft-off) exists for 

this device. When the front LED indicator is on, it means the device is active, and when the 

indicator is off, the device is in soft-off mode. 
 

Device Usage Behavior Model 

Active and pattern aspects were based on the same as those for TV usage. As with the 

satellite set-top box, the streaming device might not be used every time the TV is used. 

However, some users may only watch TV with this device; therefore, this is a maximum-

usage case.  

 

Given the same aspect definitions as for TVs, the same profiles were excluded, specifically 

those combining high active use and the high-1 pattern, due to exceeding the total number 

of hours in a day. 
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TABLE 15. STREAMING DEVICE PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate 5 hours 

 High  13 hours 

Pattern 

 Low  1 period 

 Moderate-1 2 periods, 5 hour in between 

 Moderate-2 2 periods, 1 hour in between 

 High-1 4 periods, 5 hour in between 

 High-2 4 periods, 1 hour in between 

PM 

 Low-1 Sleep disabled, user leaves on 

 Low-2 Sleep set at 1 hour, user leaves on 

 Moderate Sleep set at 15 minutes (default), user leaves on 

 High User manually puts to sleep after every use 

Device Results 

A summary of PLSim results for satellite set-top boxes is shown in Table 16. The standard 

profile (#24, mod-low-high) produces a usage of 28.13 Wh. Median falls between the values 

of profiles #26 (mod-mod1-low2) and #34 (mod-high1-low2). Minimum usage was #4 

(low-low-high). All profiles with low PM and high active use tied for maximum usage. For 

comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated as 

5.41 Wh, while the maximum boundary level (active, application running for 24 hours) is 

estimated at 70.64 Wh. 

TABLE 16. STREAMING DEVICE SUMMARY PROFILE 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Streaming Device 28.13 35.42 6.85 68.88 62.04 

 

Figure 12 shows daily energy usage for each individual profile. The primary pattern reveals 

that low PM leads to much higher usage than moderate or high PM, regardless of the other 

two aspects. Active use also matters, with increases between moderate and high active use 

and larger increases between low and moderate active use. Patterns of additional use per 

day show a slight increase in energy consumption for profiles with better-than-low PM.  
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FIGURE 12. STREAMING DEVICE ENERGY USAGE PROFILES 
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VIDEO GAME CONSOLE 

The evaluated device is a dedicated eighth-generation gaming console with an internal hard 

disk drive and wirelessly-connected controllers. The unit uses wireless connectivity and 

optical discs, as well as network interfacing, to allow downloading games and playing 

streamed media and game content. It supports HDMI CEC linking as a non-default option to 

allow remote-control linking when in operation. 

The device has active, soft-off, and rest (standby) modes, as well as a factory default 

“Power Save Setting” feature for selecting the amount time until the console transitions to 

rest mode when not actively used. It can run games either by streaming or by disc, in which 

case the device transitions to the disc menu instead of the main menu when the game is 

stopped. As energy use differs for these two types of games and future trends lead toward 

more streaming and fewer physical discs, all results used here assume streaming content.  

 

Device Usage Behavior Model 

The active usage aspects for these profiles were defined based on secondary data on self-

reported game console usage, collected as part of the original SIM Home report (Xia et al., 

2017). The research team developed the pattern and PM aspect definitions. The pattern was 

based on the same aspects as for TV usage. As with the satellite set-top box, the game 

console might not be used every time the TV is, but in some cases, the TV may be used 

only with the game console, which is a maximum usage case.  

 

The PM was based on the setting available for the particular game console tested. These 

definitions are shown in Table 17. As the active-low level is less than one hour, breaking it 

into two or four periods for the moderate and high patterns results in very short sessions; 

however, these were kept in the analyses on the assumption that short interrupted periods 

of game play were as realistic as very long periods of uninterrupted play. 

 

Given the same aspect definitions as for TVs, the same profiles were excluded, specifically 

those combining high active use and high-1 pattern, due to exceeding the total number of 

hours in a day. 
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TABLE 17. GAME CONSOLE PROFILE ASPECTS 

Aspect and level Description 

Active Use 

 Low  0.7 hour 

 Moderate  5 hours 

 High  8 hours 

Pattern 

 Low  1 period 

 Moderate-1 2 periods, 5 hour in between 

 Moderate-2 2 periods, 1 hour in between 

 High-1 4 periods, 5 hour in between 

 High-2 4 periods, 1 hour in between 

PM 

 
Low User leaves on after use, all functions active, device switches to sleep 

automatically after 5 hours (longest delay time) idle 

 
Moderate User leaves on after use, minimum functions active, device switches to sleep 

automatically after 20 minutes (shortest delay time) idle; user turns off at end 
of day 

 
High User turns off immediately after each use, set to auto sleep with the shortest 

delay 

Device Results 

A summary of PLSim results for game consoles is shown in Table 18. The standard profile 

(#18, mod-low-high) produces usage of 556.90 Wh. Median falls between the values of 

profiles #26 (mod-high1-mod) and #29 (mod-high2-mod). The minimum profile was #3 

(low-low-high) and the maximum was #25 (mod-high1-low). This produced a large range of 

modeled outcomes that vary by usage. For comparison, the minimum boundary level (at 

standby power for 24 hours) is estimated at 257.03 Wh while the maximum boundary level 

(active game play for 24 hours) is estimated at 1667.09 Wh. 

 

TABLE 18. VIDEO GAME CONSOLE SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Video Game Console 556.90 644.24 303.50 1557.76 1254.26 

 

Each individual profile’s daily energy usage is shown in Figure 13. The pattern shows higher 

energy consumption for low PM, and lower (but similar) energy consumption for moderate 

and high PM. These results suggest the amount of active use also affects energy 

consumption, but has little effect on the pattern. 
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FIGURE 13. VIDEO GAME CONSOLE ENERGY USAGE PROFILES 
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COMPUTER EQUIPMENT 

DESKTOP COMPUTER 
This device is a name-brand Small Form Factor (SFF) computer running Microsoft Windows 

10. It has multiple low-power modes, including soft-off (when manually shut down), sleep, 

hibernate, and hybrid sleep. In this test, only soft-off (shutdown) and sleep are examined. 

Energy consumption during active use varies, depending on how the computer is being used 

(for example, what programs are run). The Novabench computer benchmarking software 

tool provided maximum operational load as a reference. If the computer receives no user 

input, it transitions into a lower-power, short-idle state; after ten minutes, it transitions into 

deep-idle state. 

 

This device supports standard, Advanced Host Controller Interface (AHCI)-enabled 

operating-system-based energy management. The standard automatic sleep settings 

transition the device to sleep mode after a period of user inactivity. The possible delay 

periods range from five minutes to five hours. The default setting is a delay of 30 minutes, 

which is used as the moderate PM level. The monitor is also controlled by the standard 

onboard PM settings, and was tested separately; results presented here are for the desktop 

computer only. 

 

Device Usage Behavior Model 

The three desktop computer aspect definitions are shown in Table 19. Active use levels were 

based on self-reported survey data and reflect the same measures as in the original SIM 

Home report (Xia et al., 2017). Active typing or nonstop mouse activity for four hours is 

unlikely, but is still considered passive (for example, reading) or indirect (for example, 

periodic screen reference during a meeting) use. Because power measurements showed 

differences in active use (for example, video streaming) versus short-idle and long-idle, a 

combination of these states was used instead of assuming the computer was fully active for 

the entire period. Similarly, profiles in which sleep settings were enabled included some 

sleep time as part of the active-use period, modified based on the setting and period length. 

 

Pattern levels were varied to reflect realistic usage patterns. The combination of low active 

use and a moderate pattern resulted in active periods of 7.5 minutes each. While such 

periods would be unrealistic for many devices, it is reasonable for computers to briefly 

access email or other such programs. However, it was decided that the combination of low 

active use and high patterns, which would result in many active periods of 3.7 minutes, was 

too short to be reasonable, so these combinations were not applied. Also, high active use 

could not be combined with the high-1 pattern aspect because it would exceed 24 hours. 

 

The PM behaviors were based on those observed in the CalPlug Monitoring Study (Pixley & 

Ross, 2014) and the PMUI Study (Pixley et al., 2018), in which some subjects regularly shut 

down their computers in the evening, while others left them on and idle at all times. 
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TABLE 19. DESKTOP COMPUTER PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  12 hours 

Pattern 

 Low  1 period 

 Moderate-1 4 periods, 1 hour between 

 Moderate-2 4 periods, 25 minutes between 

 High-1  8 periods, 1 hours between 

 High-2  8 periods, 25 minutes between 

PM 

 Low Sleep setting disabled; user leaves on after use, device left in idle 

 Moderate  
User leaves on after use, device switches to sleep automatically after 30 
minutes 

 High  
User leaves on after use, device switches to sleep automatically after 10 
minutes, user turns off at end of day 

Device Results 

Table 20 provides a summary of PLSim results for the desktop computer. The standard 

profile (#11, mod-low-mod) produces usage of 609.52 Wh. Median falls between the values 

of profiles #30 (high-mod1-high) and #33 (high-mod2-high). Minimum was #3 (low-low-

high) and maximum was #34 (high-high2-low), resulting in a very large range. For 

comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated as 

45.70 Wh, while the maximum boundary level (active on for 24 hours) is estimated at 

2957.44 Wh.  

 

TABLE 20. DESKTOP COMPUTER SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Desktop Computer 609.52 1310.33 110.02 2472.48 2362.46 

 

Daily energy usage for each individual profile is shown in Figure 14. Profiles with low PM 

show consistently-high usage, regardless of other aspects. Profiles with moderate or high 

PM respond substantially to the amount of active use. Pattern as defined here does not 

show a noticeable effect. 
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FIGURE 14. DESKTOP COMPUTER ENERGY USAGE PROFILES 

LAPTOP COMPUTER 
The evaluated laptop was a name-brand Personal Computer (PC)-type 14” laptop running 

Microsoft Windows 10, with a solid-state hard disk drive. A slight variation was observed 

between periods of active usage and idle. Prior to the study, the device battery was fully 

charged; during the study, wall-sourced power was used. To model a direct entry to sleep 

without the screen first becoming dark for a period of time, screen blanking was not used. 

 

The operating system default PM settings were the same as for the desktop computer. The 

default setting for laptops, when plugged in, is a sleep-delay setting of 30 minutes. To 

simplify the simulation, the possible combinations of plugged-in and not-plugged-in usage 

and charging with all the other profile aspects were deemed too numerous to justify. 

Therefore, the energy use for all profiles is based on plugged-in tests.  

 

Device Usage Behavior Model 

For clear comparison, the same device use profiles were used for laptop computers as for 

desktop computers. These are shown in Table 21.  
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TABLE 21. LAPTOP COMPUTER PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low  0.5 hour 

 Moderate  5 hours 

 High  12 hours 

Pattern 

 Low  1 period 

 Moderate-1 4 periods, 1 hour between 

 Moderate-2 4 periods, 25 minutes between 

 High-1 8 periods, 1 hours between 

 High-2 8 periods, 25 minutes between 

PM 

 Low User leaves on and plugged in after use, sleep setting disabled 

 Moderate  
User leaves on after use, device switches to sleep automatically after 30 
minutes idle 

 High  
User closes lid to sleep immediately after use; device switches to sleep 
automatically after 10 minutes idle 

Device Results 

Table 22 provides a summary of the laptop’s PLSim results. The standard device usage 

profile (#11, mod-low-mod) produces usage of 112.33 Wh. Median falls between the values 

of profiles #26 (high-low-mod) and #30 (high-mod1-high). The minimum was #3 (low-low-

high) and maximum was a tie between profiles #28 (high-mod1-low), #31 (high-mod2-low) 

and #34 (high-high2-low). For comparison, the minimum boundary level (at soft-off power 

for 24 hours) is estimated at 7.44 Wh, while the maximum boundary level (active on for 24 

hours) is estimated at 595.45 Wh.  

 

TABLE 22. LAPTOP COMPUTER SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Laptop Computer 112.33 243.11 28.87 423.29 394.42 

 

Daily energy usage for each individual profile is shown in Figure 15. The pattern is very 

similar to that of desktop computers. Profiles with low PM show consistently-high usage, 

regardless of other aspects. Profiles with moderate or high PM respond substantially to the 

amount of active use, while patterns seem to have little effect.  
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FIGURE 15. LAPTOP COMPUTER ENERGY USAGE PROFILES 

KITCHEN APPLIANCES 

POD COFFEE MAKERS 
We tested two similar pod coffee makers from the same manufacturer. Pod coffee maker 

Model A is a more advanced design with a Liquid Crystal Display (LCD), while Model B has a 

basic design without a display. Both devices are single-cup-dispensing coffee makers, with 

three possible cup sizes along with adjustable brew temperatures. Tests were run using the 

medium cup size and standard brew temperature. Each device remained plugged in when 

not in use. When activated, they drew water from an on-board reservoir and heated it 

within an internal chamber. The temperature was maintained for this amount of water until 

it was dispensed through the coffee or tea pod to produce the hot beverage. After that cup 

was brewed, another cache of water was pulled from the reservoir and heated.  

 

A user-enabled power-save feature was available to transition the device to soft-off mode, 

which was deactivated by default. The auto-off function for Model B offers only a two-hour 

delay period option, while Model A offers a wide array of options starting at 20 minutes and 

advancing in one-hour increments up to nine hours. Model A can also be programmed to 

turn on and off at specific times of day, but that feature was not tested in this study.  

 

Device Usage Behavior Model 

Table 23 provides definitions of the three aspects constructed for the two pod coffee 

makers. The active-use levels were based on self-reported survey data. The pattern levels 

were varied to reflect realistic usage. As with other devices, the moderate-PM level is 

defined as the default factory setting. However, since the default involves no PM, this leaves 

no room for a low-PM option that would save less energy. Instead, we constructed an 

additional high-PM level to provide three comparison levels, and also applied a two-hour 

auto-off delay in the PM aspect definitions for both models. 
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As the low active use level is one cup, this cannot be combined with the moderate or low 

pattern levels (which require making two or three cups in a row), so those profiles are not 

included. Additionally, profiles with high active use of 12 cups per day, and a high pattern of 

one cup at a time with three hours in between, exceed 24 hours and were therefore 

omitted. 

 

TABLE 23. POD COFFEE MAKER PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low 1 cup 

 Moderate 6 cups 

 High 12 cups 

Pattern 

 Low 3 cups in a row, 3 hours in between 

 Moderate 2 cups in a row, 3 hours in between 

 High 1 cup at a time, 3 hours in between 

PM 

 Moderate Auto-off disabled (default), stays in keep-warm cycle all the time 

 High-1 Auto-off after 2 hours enabled (keep hot cycle for 2 hours) 

 High-2 Auto off enabled, and user turns off after last cup (manual off) 

Device Results (Model A) 

A summary of PLSim results for Model A is shown in Table 24. The standard profile (#4, 

mod-low-mod) produces usage of 1076.87 Wh. Median falls between the values of profiles 

#8 (mod-mod-high1) and #14 (high-low-high1). Minimum was #3 (low-high-high2), and 

maximum was a tie between profiles #13 (high-low-mod) and #16 (high-mod-mod). For 

comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated at 

143.75 Wh, while the maximum boundary level (“active warm up” for cold brewing 24 cups, 

and “hold” for the remainder of 24 hours) is estimated at 1289.06 Wh.  

 

Note that for the pod coffee makers, there is no low-PM level, because the default setting 

that defines the moderate level is with no power saving features engaged. So it is expected 

that the standard profile (mod-low-mod) would have fairly high energy consumption relative 

to those with higher (more efficient) PM levels. 

 

TABLE 24. POD COFFEE MAKER MODEL A SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Pod Coffee Maker A 1076.87 639.85 189.03 1147.60 958.57 

 

Daily energy usage for each individual profile is shown in Figure 16. The primary pattern is 

that low PM leads to much higher usage than moderate or high PM, regardless of the other 

two aspects, although higher active use levels make a modest impact. 
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FIGURE 16. POD COFFEE MAKER MODEL A ENERGY USAGE PROFILES 

Device Results (Model B) 

A summary of PLSim results for Model A is shown in Table 25. The standard profile (#4, 

mod-low-mod) produces a usage of 1046.40 Wh. Median falls between the values of profiles 

#8 (mod-mod-high1) and #14 (high-low-high1). As for Model A, the minimum profile was 

#3 (low-high-high2) and the maximum was a tie between profiles #13 (high- low-mod) and 

#16 (high-mod-mod).  

 

For comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated 

as 87.00 Wh, while the maximum boundary level (“active warm up” to cold brew 24 cups 

and “hold” for the remainder of 24 hours) is estimated at 1151.40 Wh. The range of usage 

estimates is very similar to that of Model A, although overall, this device uses somewhat 

less energy. 

 

TABLE 25. POD COFFEE MAKER MODEL B SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Pod Coffee Maker B 1046.40 535.70 123.32 1081.40 958.08 

 

Daily energy usage for each individual profile is shown in Figure 17. The pattern is very 

similar to that of Model A, although for profiles with high PM, the estimates appear more 

responsive to the amount of active use than for the other device. 
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FIGURE 17. POD COFFEE MAKER MODEL B ENERGY USAGE PROFILES 

RICE COOKER 
The rice cooker we tested was able to prepare a maximum capacity of ten cups of cooked 

rice (approximately three to 3.5 cups uncooked, depending on the type of rice). This device 

had a delay timer for programming the start of the cook cycle, but this feature was not 

evaluated. In addition to cooking rice, this device also has a steaming function, but it was 

not tested here.  

 

When the rice cooker function is turned on, the device heats the water to boiling, then 

switches to the “cook” cycle to maintain the temperature. When the temperature begins to 

rise above boiling, it indicates the water has been absorbed, and the cook cycle ends. 

Therefore, this cycle varies based on the amount and type of rice, and the amount of water 

added to cook. When the active cooking period ends, an alarm sounds and the device 

automatically switches to a "keep-warm" mode. A passive cooldown period occurs, where 

the temperature reduces to 65.5 C and is maintained.  

 

There is no auto-off capability, so the device will stay in the “keep-warm” state until turned 

off. If left plugged in, it stays in a soft-off state at very low power. The device constantly 

displays the front lights, even in the lowest-power (soft-off) state. 

 

For all tests, white jasmine rice was cooked at a ratio of 1.5 cups of water per one cup of 

rice. A dual thermocouple thermometer was used to measure both vapor temperature and 

liquid temperature.  

 

Device Usage Behavior Model 

Definitions of the three aspects constructed for the rice cooker are shown in Table 26. The 

active levels were based on reasonable assumptions about use patterns. Note that a single 

cup of uncooked white rice generally expands to about three times its volume when cooked, 

although this varies by the type of rice and the amount of water. The pattern levels were 

varied to reflect realistic usage patterns based on meal times; that is, some households will 
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make one large pot of rice for breakfast and keep it warm all day, while others might make 

a separate pot for one to three meals.  

 

The moderate PM setting reflects an anecdotally-common practice of leaving rice on “warm” 

during the remainder of meal preparation and over the course of the meal (estimated as 

one total hour). Low PM reflects the practice of keeping rice warm throughout the day, 

either by making new pots of rice for later meals, or by making one pot and keeping it 

warm all day ("all day" is defined here as the 24-hour period minus eight hours for sleeping, 

or 16 hours). Moderate PM is used for the standard testing profile, since the default setting 

transitions the device to “warm,” and that state should be included in total energy 

consumption. No profiles were omitted. 

 

TABLE 26. RICE COOKER PROFILE ASPECTS 

Aspect and Level Description 

Active Use 

 Low 1 cup* 

 Moderate 2 cups* 

 High 3 cups* 

Pattern 

 Low 1 use per day 

 Moderate 2 uses per day, 5 hours in between 

 High 3 uses per day, 5 hours in between 

PM 

 
Low User leaves on warm all day, no matter how many pots they make (user turns 

off at hour 16) 

 Moderate User leaves on warm for 1 hour then turns off 

 High User turns off immediately after cooking is completed 

* Uncooked white jasmine rice. 

Device Results  

A summary of the rice cooker’s PLSim results is shown in Table 27. The standard profile 

(#11, mod-low-mod) produced usage of 282.19 Wh. Median is #14 (mod-low-low). 

Minimum is #3 (low-low-high) and maximum is #25 (high-high-low), resulting in a wide, 

varied range of modeled outcomes.  

 

For comparison, the minimum boundary level (at soft-off power for 24 hours) is estimated 

at 18.72 Wh, while the maximum boundary level – cooking six cups of rice (twice the high 

active level, one cup at a time, warming in between and for the rest of the 24 hours) – is 

estimated at 1934.21 Wh, providing reference boundaries for excessively-wasteful/longest-

possible use (maximum usage) and non-usage.  
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TABLE 27. RICE COOKER SUMMARY RESULTS 

 Standard 
(Wh) 

Median (Wh) Min (Wh) Max (Wh) Range (Wh) 

Rice Cooker 282.19 529.44 249.00 937.92 688.93 

 

Each individual profile’s daily energy usage is shown in Figure 18. The primary pattern 

shows low PM leads to much higher usage than moderate or high PM, regardless of the 

other two aspects, although moderate and high PM are very similar.  

 

The pattern also shows an effect, with higher patterns (usage spread out more over the 

day) indicating higher energy use. For instance, for profiles with low active and moderate 

PM levels, making one cup of rice once a day (Pattern Low) uses 260 kWh. Splitting one cup 

of rice into two half-cup batches (Pattern Mod) results in 465 kWh, and making it in three 

batches results in 648 kWh. The total amount of active use also shows a modest effect. 

 

 

FIGURE 18. RICE COOKER ENERGY USE PROFILES 
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RANGE OF ENERGY CONSUMPTION ACROSS PROFILES, BY DEVICE 

 

The findings so far help to answer the first research question: given a reasonable range of 

usage behaviors, what range of results would be seen for the devices included in these 

tests? That is, if we assumed all devices in all households were run according to the 

standard device use profile, how far off would we be about the highest- and lowest-usage 

households? If the range for a device is relatively small, this suggests that standard tests 

would give good estimates across an array of households.  

However, if the device's energy consumption is not responsive to actual usage parameters, 

perhaps additional development of low-power states could help reduce consumption during 

non-active periods. On the other hand, if the range across profiles is very large, especially 

in terms of values much higher than the standard testing profile, it indicates possible 

intervention points of either reducing active use or promoting more effective PM. 

The summary tables for each device in the previous section show the range between the 

minimum and maximum, but this should be considered in the context of the median energy 

consumption for that device. For instance, a range of 50 Wh would be small if the device's 

median consumption was 1000 Wh, but substantial if it was 100 Wh. For comparison, the 

summary results for each device are presented in Table 28 as the absolute percentage 

difference between the standard device use profile (mod-low-mod or mod-low-high, 

depending on the device) and the profiles producing the minimum and maximum results.  

For instance, if a standard profile produced an energy consumption estimate of 100 Wh and 

the profiles with the minimum and maximum were at 80 Wh and 120 Wh, both the 

minimum and maximum percentage from standard would be 20%, and the range 

percentage would be 40%. Logically, it is possible for the maximum profile to be more than 

100% higher than the standard profile (that is, use more than twice as much energy) but 

the difference between the standard and minimum profiles must be less than 100% of the 

standard profile, probably much less (as 100% lower would mean zero energy consumption 

for the minimum profile).  

Among entertainment devices, the two TVs show large energy consumption ranges, but the 

video game console range is also high, especially compared to those of the sound bar and 

set-top box. The streaming device shows a large range, but the standard profile’s energy 

consumption is so low that it is not important.  

The TV profiles’ energy consumption estimates range by almost 300% of the standard 

device use profile: most of that represents how much higher the maximum profile is, but 

the minimum profiles save an impressive 93-94% of energy compared to the standard 

profile. By contrast, the satellite set-top box shows the lowest ranges of all the devices 

shown here. For most of the devices, the maximum estimates vary more greatly from the 

standard than the minimum estimates do.  

The desktop computer used substantially more energy than the laptop computer in the 

standard profile. However, their relative ranges are similar. The minimum profiles for both 

computers saved a similar proportion of energy relative to the standard profiles, but the 

desktop’s maximum profile used proportionally more than the laptop.  

The two pod coffee makers have very similar results. For both, the range is about 90% of 

the standard profile’s energy consumption, almost all due to the minimum usage profile 

being substantially lower than the standard profile. Note that the pod coffee makers have 
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PM features, but are shipped with those settings disabled, so the moderate PM level has no 

low-power mode, and all PM levels save more energy than the standard profile. 

By contrast, the rice cooker shows a very large range of energy consumption, with the 

maximum being much higher than the standard profile.  

TABLE 28 SUMMARY OF RANGES AS PERCENTAGE DIFFERENCE FROM STANDARD PROFILE 

 

Standard 
(Wh) 

Min % from 
Standard 

Max % from 
Standard 

Range % of 
Standard 

4K TV 1305.1 94% 187% 281% 

HDTV 667.4 93% 185% 278% 

Sound Bar 111.7 19% 77% 96% 

Set-Top Box  669.9 2% 4% 7% 

Streaming Device  28.1 76% 145% 220% 

Video Game Console 556.9 46% 180% 225% 

Desktop Computer 609.5 82% 306% 388% 

Laptop Computer 112.3 74% 277% 351% 

Pod Coffee Maker A 1076.9 82% 7% 89% 

Pod Coffee Maker B 1046.4 88% 3% 92% 

Rice Cooker 282.2 12% 232% 244% 

 

These results are presented graphically in Figure 19, for easier comparison across devices in 

terms of both standard profile energy consumption and ranges. Three general patterns are 

seen: devices with very small ranges; devices with low or moderate ranges, either mostly 

higher or mostly lower than the standard profile; and devices with large ranges that span in 

both directions from the standard profile, but lean toward higher values.  

 

For instance, the standard profiles for pod coffee makers exhibit energy consumption almost 

as high as that of the 4K TV, and higher than the HDTV. However, almost all the variations 

in how pod coffee makers are used result in lower consumption, whereas the top range for 

TVs is substantially higher.  

 

By contrast, the rice cooker shows the opposite pattern, with other ways of using the device 

resulting in higher energy consumption than the standard profile. The same is true for the 

desktop computer, game console, and set-top box. The standard profiles for these devices 

show similar energy consumption, but for both the desktop computer and game console, 

usage variation can lead to higher consumption (much higher for the desktop) whereas the 

set-top box has almost no usage variation.  

 

In the multivariate analysis section, analyses are presented that indicate whether active 

use, pattern, or PM levels have a greater impact on the range of energy consumption across 

profiles for each device. This is especially important for devices with large or moderate 

ranges. Those results will give little insight, however, to the set-top box, sound bar, and 

streaming device, since the variation is so low. 
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FIGURE 19. RANGE OF DAILY ENERGY CONSUMPTION OF PROFILES, BY DEVICE 

MISER 
For computers, because PM is complicated in nature and has variable settings, a specifically-

developed tool can be used to analyze the marginal difference in energy usage across PM 

settings for this device class. When introducing the tool, the authors discussed how it could 

be used to analyze the 2014 Monitoring Study, which is the default operational dataset for 

assessing office desktop computers, and provide insight on similar devices.  

 

A day-by-day simulation can be performed to identify the frequency and length of idle 

periods in actual usage, given the observed PM settings, and calculate the amount of energy 

that could be saved if different settings were used. The energy saved by replacing idle time 

with sleep time differs across computers, but as the sleep state uses a small fraction of the 

energy used in idle mode, this provides an energy savings proxy. 

 

Analyses were performed using the Monitoring Study data where potential marginal energy 

savings were tabulated for different periods of default settings. This provides the total 

amount of idle time that would have been reduced (that is, energy saved) if the simulated 

new PM settings were used as opposed to the observed PM settings. The resulting output 

values are expressed in minutes per day of idle time that would be transitioned to the sleep 

state, if the PM had been set more stringently. Inputting estimates (or direct measures, if 

available) of power usage at each operational state determines energy saved and total 

energy consumption per year in kilowatt hours (kWh). 

 

The large number of studied computers with disabled sleep settings stayed in idle mode not 

only overnight, but for multi-day periods over weekends and vacations. This means that 

even PM settings with longer delay periods break a multi-day waste cycle, producing 
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savings. The simulated savings of idle minutes due to enabling sleep settings, depending on 

delay period, is shown in Figure 20.  

 

Going from disabled sleep settings to the highest possible delay period of 300 minutes saves 

a substantial amount of idle time (413 minutes); reducing that to the default settings of 30 

minutes almost doubles the savings (782 minutes). Shorter sleep delay settings produce 

higher savings compared to longer delays by not only transitioning earlier at the end of the 

day, but also by catching idle times between periods of activity during daily usage. Using a 

delay period of 30 minutes as opposed to 120 minutes can save 160 minutes per day of 

runtime; considering the power usage difference between active and sleep states, this 

results in 116 Wh/day average savings based on the model generated from the 

observational data.  

 

More idle time is reduced when pushing the delay setting to 20 or 10 minutes rather than 

30 minutes, but it is important to remember that shorter delay period settings are more 

likely to lead to false sleep periods and annoy users, especially those who previously had 

their sleep settings disabled. Encouraging users to enable their sleep settings at a 30-

minute delay rather than a 300-minute delay will save substantial idle time (369 more 

minutes) whereas pushing users to begin by trying a 10- or 20-minute delay period will only 

save an additional 28 to 67 minutes over a 30-minute delay, but may increase the risk of 

them reverting to disabled sleep settings.  

 

As explained earlier, the Monitoring Study data only provided device state information in 

15-minute blocks, which affects the precision of estimates for shorter periods of idle. This is 

a limitation of the data, not of MISER; additional analyses with more robust data would be 

useful to verify these estimates.  

    

 

FIGURE 20. PER DAY IDLE TIME SAVINGS FOR COMPUTERS WITH DISABLED PM BY SIMULATED NEW PM SETTING 

 

MISER’s practical use is limited to computers and other devices with PM settings offering 

multiple delay period options. This is true for several types of plug load devices, including 

others covered in this report, but the desktop computer is the only device for which the 

necessary field study dataset was available. 
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The results shown here are based on office desktop computers used by staff at a university. 

The transferability of results for residential desktop computers is not well understood. Using 

MISER with laptops treats these systems like desktops, with respect to modeling. Highly-

portable home laptops may not be well modeled by this approach. New datasets and better 

understanding of how residential computers are used can provide improved capability for 

this tool. The effects of sleep blocking and the prevalence of this phenomenon as caused by 

programs preventing entry into sleep is not well understood, resulting in MISER findings 

representing a more ideal solution than may actually happen during observation. 

 

While MISER has a limited scope in this study, it can provide context to help understand the 

results of other evaluation approaches for these devices. Continued MISER development can 

help improve usefulness for other modeling scenarios, and improved modeling acuity for 

desktops and laptops in different usages circumstances.  

EFFECTS OF BEHAVIORAL ASPECTS 
The figures in the previous section illustrated patterns of results across profiles in which PM 

appeared to be most important for energy use in some devices, while amount of active use 

or pattern of use also appeared significant in others. The multivariate regression models 

shown in this section serve to quantify those patterns.  

 

Regression models were used to evaluate the proportion of variation in modeled energy 

consumption across device use profiles attributed to the three aspects tested here, given 

the specific definitions of each aspect. That is, particularly for devices with a large range of 

modeled values, is the deviation from the standard default device use profile largely due to 

differences in the amount of active use, in the timing or pattern of that use, or in the PM 

settings or behaviors?  

 

For each device, four models were run: one for each aspect alone, and one full model 

including predictor variables for all three aspects. The sample for each model is the set of 

device use profiles for that device, and the dependent variable is the energy consumption 

calculated for each profile. Each regression model produces an R2 goodness of fit statistic 

that indicates the proportion of the variance in the dependent variable explained by the 

parameters in that specific model. For example, if the R2 statistic for the Active Model were 

0.50, that would indicate that 50 percent of the variance in energy consumption across the 

device use profiles was due to whether they had high, moderate, or low active use.  

 

An example of a nested model regression is presented here to illustrate how the process 

works. The remaining regressions are omitted, as the main results can be adequately 

summarized by presenting the R2 goodness-of-fit statistics. Regression results for the 

desktop computer are shown in Table 29. For any set of dummy variables that exhaustively 

describes all cases within the sample, one variable must be omitted from the model to act 

as a reference group.  

 

In the Active Model, the moderate level is the reference group. If the coefficients (B) for 

active-low and active-high are significant, they are interpreted as the average difference for 

any profile with that aspect level compared to the active moderate. In this case, we see that 

active-high profiles show energy consumption that are 506.78 Wh higher than active-

moderate on average (although it only approaches significance at the p < .10 level), and 

that there is no significant difference between active-moderate and active-low. Additional 

tests (not shown) confirm that active-high is significantly higher than active-low.  
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The R2 statistic shows that 20.0 percent of the variance in energy consumption is explained 

by the active aspect alone. The model (F statistic) is significant at p < .05. By contrast, 

none of the coefficients in the Pattern Model are significant, the R2 statistic is only 3.6 

percent, and the model is not significant at the p < .05 level. This indicates that by 

themselves, pattern levels do not significantly affect energy consumption. It is still possible 

that they interact with PM aspects (that question is not assessed in the current model).  

 

The PM Model shows a very strong effect, with a large difference between the PM-moderate 

and PM-low profiles (and, not shown, between the PM-high and PM-low profiles), although 

there is no significant difference between the moderate and high PM profiles. The R2 statistic 

shows that 73.9 percent of the variance in energy consumption is explained by PM levels.  

 

Finally, the full model includes all three aspects, and shows the effect of each variable net of 

the other variables in the model. The total R2 statistic is 95.2 percent, approaching almost 

100 percent. This would be highly unusual for any natural observational sample, as there ae 

always unmeasured sources of variation not captured in the model. However, since these 

profiles were calculated using only the variables contained in the model, no such outside 

source of variation exists.  

 

Indeed, the only reason the model would not explain all the variances would be if there 

were interaction effects among the included variables – for example, if the pattern had a 

different effect depending on the level of PM. This type of interaction seems to account for 

just under five percent of the variation in energy consumption for this device.  
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TABLE 29. REGRESSION OF ENERGY CONSUMPTION ON DEVICE PROFILE ASPECTS FOR DESKTOP COMPUTER 

 Active Model Pattern Model PM Model Full Model 

Predictors B SE P B SE p B SE p B SE p 

Active Low -416.35 311.10 0.1899       -343.64 91.09 0.0008 

Ref: Active 
Moderate 

---         ---   

Active High 506.78 285.77 0.0854       536.75 81.47 <.0001 

Ref: Pattern 
Low 

   ---      ---   

Pattern 
Moderate-1 

   -139.23 393.94 0.7262    139.23 94.08 0.1505 

Pattern 
Moderate-2 

   126.92 393.94 0.7495    126.92 94.08 0.1885 

Pattern 
High-1 

   216.94 557.12 0.6996    281.31 141.77 0.0575 

Pattern 
High-2 

   463.66 440.44 0.3006    259.66 108.63 0.0241 

PM Low       1332.39 172.01 <.0001 1332.39 81.47 <.0001 

Ref: PM 
Moderate 

      ---   ---   

PM High       -195.96 172.01 0.2628 -195.96 81.47 0.0233 

             

Intercept 1258.18 190.51 <.0001 1161.12 278.56 0.0002 944.21 121.63 <.0001 717.95 95.05 <.0001 

F 4.12   0.29   46.75   67.11   

Pr > F 0.0252   0.8829   <.0001   <.0001   

R2 0.200   0.036   0.739   0.952   

*** = p < .001; ** = p < .01; * = p < .05 

 

The results of the aspect-specific regression models are summarized for all the tested 

devices in Figure 21. The asterisks indicate which models were statistically significant. These 

results reveal major differences in the relative importance of active use, pattern, and PM for 

energy consumption across these devices.  

 

These effects should also be considered within the context of how much energy 

consumption ranged across profiles for that device. For instance, for the set-top box, PM 

explains 72% of the variance in energy consumption. However, compared to the standard 

profile for the set-top box, energy consumption only ranges from 2% lower to 4% higher 

across other profiles (see Table 28), so there is essentially no variance to explain. For that 

reason, the set-top box is not discussed here. For the sound bar and streaming device, the 

variation is higher as a percentage of the fairly-low standard energy consumption, although 

the range still represents a small increase or decrease. 

 

For all the devices, PM explained a significant proportion of the variation in energy 

consumption across profiles. Devices varied in the effects of active use and pattern of use 

aspects. Four patterns are exhibited: (1) strong impacts of both active and PM aspects, with 

active use almost as high as PM (4K and HDTVs); (2) significant impact of the active aspect 

but much lower than the impact for PM (streaming device, video game console, desktop 

computer, and laptop); (3) significant impact for PM alone (sound bar and both pod coffee 

makers); and (4) significant impact of pattern of use that exceeds that of PM (rice cooker). 
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FIGURE 21. PROPORTION OF VARIANCE IN ENERGY CONSUMPTION EXPLAINED BY EACH ASPECT 
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DISCUSSION 
The impact of behavior on energy use is a major consideration to produce an accurate 

evaluation of device energy consumption for modeling and mitigation efforts.  

In this project, the authors demonstrated a multi-phase analysis method of evaluating the 

energy consumption effects of three aspects of user device behavior: the amount of active 

use, the pattern of use, and PM. This method was applied to assess common residential plug 

load device energy use across a number of major categories (see Table 2). Using carefully-

defined profiles, comparisons highlighted points of energy impact to prioritize and focus 

efforts to address improving energy usage in specific devices related to generated profiles. 

Future testing and evaluation methods could expand upon this method and continue refining 

procedures to match devices as they evolve, considering behavior and usage.  

 

The analyses in this report address two main questions. The first is how large a range of 

energy consumption outcomes the device use profiles generate for each device, based on 

reasonable assumptions about the range of real-life usage. A subset to this question is 

whether the range is primarily higher or lower than the standard profile representing what 

would be produced by standardized testing protocols. If the range is fairly small, or if it is 

evenly distributed, standardized tests are more likely to produce accurate estimates of real-

life outcomes, if averaged over a large number of households. However, if the range is very 

small, this raises a new concern: that the device’s energy use is not responding to the 

amount of time the device is actively being used, and that any PM features are ineffective at 

saving energy.  

 

The second main question is how much of the variation, within the range of energy 

consumption outcomes across profiles, is explained by differences in active use versus 

pattern of use or PM behaviors. Energy consumption is expected to vary by active use – if it 

is the main driver of energy use, then energy-saving strategies would logically focus on 

reducing the operational costs of active use for that device. Likewise, PM is expected to 

affect energy consumption – if engaging PM options fails to save energy, it suggests those 

options are ineffective.  

 

However, if much of the variation attributable to PM behaviors results in higher energy 

usage, it suggests a different type of problem – that PM options may not be effectively 

engaged by users, which prompts additional research and development into modes and user 

interfaces that will work in everyday usage. As described earlier, the device usage profiles 

are based on observed or self-reported behaviors as much as possible, but several 

assumptions had to be made when defining the levels of each aspect. Therefore, any 

conclusions are limited by the extent to which the assumptions about average, and also 

extreme, behaviors (those at the 10th and 90th percentile) are accepted as reasonable. 

 

The answers to both of these questions differed greatly across the plug load devices tested 

here. For that reason, the discussion below focuses on specific devices, with the ordering 

adjusted to help compare similar device results. 
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SPECIFIC DEVICES 

TVS 

The 4K TV tested here uses almost twice as much energy in its standard profile as the HDTV 

(1305 Wh versus 667 Wh). However, the results patterns are otherwise similar. Both TVs 

produce a large range of energy consumption estimates across the profiles (3664 Wh, or 

281% of standard for 4K, and 1855 Wh, or 278% of standard for HD). In both cases, the 

upper range is twice as large as the lower range. For instance, for the 4K TV, the lowest-use 

profile is only 82 Wh (lower by 94% of the standard profile) while the highest-use profile is 

3747 Wh (higher by 187% of the standard profile). This suggests that, to the extent these 

device use profiles reflect real-life behavior patterns, estimates based on standard usage 

would underestimate total usage across households. 

 

The high energy consumption of the standard profiles for these devices (especially the 4K 

TV) and the very high range in energy consumption shown by the profiles (especially higher 

than the standard profile) motivates a close look at the relative impact of the three device 

use aspects. The two TVs show a pattern not seen in other devices – the active use aspect 

is almost as strong a predictor of variation in energy consumption as the PM aspect.  

 

The pattern aspect does not significantly impact energy consumption for TVs, which makes 

sense given the lack of a substantial boot-up period.  

 

As active use and PM are both important contributors to TV energy use, they provide 

avenues for potential energy savings. Reducing energy consumption during active use is 

already a main consideration in energy efficiency regulations aimed toward manufacturers. 

These results could encourage stricter regulations for devices such as TVs, if the length of 

time some households actively use their TVs were more strongly weighed in deliberations. 

Options that adjust screen brightness can potentially save energy during active use, 

although not enough is known about how these features are used (or misused) in real 

households, and whether this behavior negates any possible savings. 

 

On the other hand, improving PM options and their use could potentially save as much 

energy with less extensive modifications to the devices themselves. Both of these TVs have 

very low-power standby modes; the challenge is to transition the device into standby mode 

whenever feasible. Both TVs have a feature that transitions the device to sleep after a delay 

period with no signal from the connected source. The feature for the 4K TV has three delay 

settings from 15 minutes (default) to 60 minutes, while the HDTV has only one delay setting 

(10 minutes). This feature can potentially save substantial energy, but only in specific 

circumstances – when the TV is receiving content from an external device (rather than 

through apps in a smart TV) or when the user either turns that device off when done or has 

that device set to sleep after a short period of inactivity. Otherwise, the sleep transition will 

not activate due to lack of signal. 

 

The 4K TV also has an auto-off feature that transitions to sleep mode in the absence of user 

input (i.e., through the remote control) but the lowest possible delay period is four hours, 

which is the default setting. The HDTV has no such auto-off feature. One relatively simple 

improvement would be to provide such a feature in all TVs, offer shorter delay period 

options (as short as 1 hour) and set a two-hour delay as the default. Informative user 

interfaces, such as motivating explanations on the PM setting screen or signals to warn of 

an impending sleep transition easily bypassed by pressing a remote control button, are 

essential for encouraging users to enable (or not disable) PM settings and understand how 

to use them effectively.  
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VIDEO GAME CONSOLE 

The video game console tested here showed results closest to that of the HDTV in terms of 

its standard profile energy consumption (557 Wh) and its range of consumption across 

profiles (225%). However, the total range was not as large as for the HDTV (1254 Wh 

versus 1855 Wh). Compared to TVs, the lower range for the video game console is smaller 

(lower by 46% of the standard profile) while the upper range is almost as large (higher by 

180% of the standard profile). In other words, the video game console uses less energy 

than the HDTV (and much less than the 4K TV) but a larger proportion of its estimated use 

is higher than (versus lower than) the standard profile. 

 

Like several of the other devices, the video game console showed a large impact of PM on 

variation in energy consumption across devices, and a smaller (but significant) impact of 

active use. The difference between the two is less pronounced compared to most other 

devices (that is, a relatively larger impact of active) making the video game console more 

similar to the TVs in this respect. As such, the results support a similar approach to that 

described above for TVs, in which approaches for reducing consumption during active use 

are warranted, and those focused on improving PM are as well. 

 

The video game console tested here has a standby state (called "rest"), which uses 10.7 W 

compared to active game play at 69.5 W, and a main system menu page, which uses almost 

as much energy at 63.7 W. When the user stops playing, the system automatically switches 

to the main system menu page and stays there until the user turns off the device or the 

automatic standby delay is activated. The standby delay period can be set from a minimum 

of 20 minutes to a maximum of five hours.  

 

As with any other device, effective user interface instructions may help motivate users to 

enable the standby option and use a shorter delay setting. Users may be especially 

reluctant to turn off gaming devices or let them sleep because of fears their progress will be 

lost, even if this concern is unfounded; added security and reassuring communication may 

be helpful here. Another point is that the main system menu page, if not interacted with, 

functions similarly to a standby mode, and yet consumes almost the same power as active 

gaming and continues to do so no matter how long the device goes unused. This suggests 

exploring the possibility that a "deep idle" mode, similar to that of computers, could save 

additional energy by pausing certain processes after a shorter period of inactivity.  

SET-TOP BOX 

The set-top box provided a unique pattern of all the devices tested here, in that the energy 

usage of the standard profile (678 Wh) was higher than many others, while the range of 

energy use estimates across profiles was negligible. The total range across profiles is only 

45.7 Wh, or 4% above standard and 2% below standard. In fact, this mirrors the maximum 

boundary condition range for this device, which consumes 699.7 Wh at the highest possible 

use state (active video) for 24 hours versus 654.0 Wh at the lowest possible use state 

(standby). This quantifies the extent to which the energy use for this device is not 

responsive to any variation in behavior, and uses essentially the same energy while idle as 

while active.  

 

Indeed, the minimum and maximum device use profile results were the same as the 

minimum and maximum boundary conditions – that is, the least the device could possibly 

use (if on standby all day) and the most it could use (if active all day). This reflects the fact 

that set-top boxes must maintain continuous connections for program and encryption 

services; even in their lowest-power standby mode, they use substantial power. As a result, 

users are limited in how much they can affect this device’s energy savings. 
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Given the lack of variation in energy consumption across profiles, multivariate analyses 

explaining which use aspect caused that variation are moot. A closer examination of this 

device’s operation shows the PM features are completely ineffective due to the high power 

usage of the idle and standby states relative to the active state. The device uses 27.25 W 

while in standby mode compared to 29.16 W while actively used. The only PM option is a 

four-hour delay time; this leaves the device in idle mode, which uses the same power as 

active use. Ideally, shorter delay times would also be available and used as the default, but 

without an effective lower-power mode to transition into (this is of secondary concern). 

 

If it is not possible to reduce relative power consumption during standby because too many 

of the same functions must operate even when the device is not in use, then the only 

avenue for saving energy with this device is to reduce consumption in active-use mode. 

STREAMING DEVICE 

Of all the devices tested here, the streaming device uses the least amount of energy for its 

standard profile, and shows one of the narrowest absolute ranges of energy consumption 

estimates across the profiles, at 62.04 Wh between the lowest and highest. This is only 

somewhat larger than the set-top box range (45.7 Wh). Because the streaming device has 

such low standard energy consumption, the proportional range is moderate compared to the 

other devices (76% lower and 145% higher than the standard profile). That said, relative to 

other devices tested here, there is not a substantial absolute amount of energy variation to 

explain, or to save.  

 

As shown in the pattern of results for the streaming device's energy usage profiles (see 

Figure 12), all profiles with the PM-low-1 level produce a relatively high energy consumption 

estimate (around 67 to 69 Wh) which almost reaches the boundary maximum of 70.6 Wh. 

So it is not surprising that PM explains the majority of variation in energy consumption 

across profiles (69%). However, active use also explains a significant amount (24%).  

 

The streaming device benefits from having an aggressive PM as a default setting, with an 

elaborate and engaging screensaver. The applications that run on this streaming device do 

not appear to contribute substantially to sleep blocking for idle states (where the device is 

paused on a video or menu). However, the device will continue to play active video 

wastefully even if not being viewed, which suggests one possible avenue of saving energy. 

SOUND BAR 

When presented in comparison to other devices in Figure 20, the sound bar most closely 

resembles the streaming device, in that the standard profile energy use is low compared to 

most others tested here (112 Wh) and the range between the lowest and highest device use 

profiles is relatively narrow (108 Wh, or 96% around the standard profile). However, the 

absolute range of energy consumption is more than twice as large as that of the streaming 

device, indicating more potential room for substantive energy savings. 

 

The sound bar is one of the three devices for which the majority of variation in energy 

consumption across profiles is explained by PM, and neither active use nor pattern are 

significant factors. The overwhelming influence of the PM low level is shown in the graph of 

energy usage across profiles for this device (see Figure 10). Indeed, if all profiles using PM 

low are removed, the maximum profile usage drops by 48 Wh, cutting the range by almost 

half. Additional analyses that omitted PM-low profiles (not shown) reversed these findings: 

no differences were seen across the moderate and high levels of PM, while the majority of 
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the remaining variance was explained by active use. This example illustrates the importance 

of doing more research on how these devices are used in actual households, to help 

establish which assumptions are reasonable for high and low behavioral usage. 

DESKTOP AND LAPTOP COMPUTERS 

Desktop and laptop computers show a similar range of energy consumption estimates 

(388% around the standard profile for the desktop and 351% for the laptop) and the 

pattern is similar as well, in that the upper range is much larger than the lower range. 

However, as the desktop computer uses so much more energy in its standard profile than 

the laptop computer (609.5 Wh versus 112.3 Wh), the absolute range for the desktop is 

much larger, and the substantive effects of the higher-use profiles are even greater. Put 

another way, the highest-use profile for the desktop uses 1862.9 Wh more than the 

standard profile (306% more) whereas the highest-use profile for the laptop uses 311.0 Wh 

more than the standard profile (277% more).  

 

In terms of how much the standard profile potentially underestimates real-life usage, the 

desktop is second only to the 4K TV. Depending on how many households exhibit higher-use 

profile behaviors compared to those who exhibit lower-use profile behaviors, average 

estimates assuming the standard use profile could be off by enough to negate variation in 

any other household plug load device. 

 

Turning to which aspects predict greater variance in energy usage across profiles, the 

desktop and laptop computers follow the same pattern as the video game console, 

streaming device, and set-top box: both active use and PM aspects are significant 

contributors, but PM has a much greater impact. Pattern of use shows more impact for 

computers than for other devices covered so far, but not enough to achieve significance.  

 

In theory, pattern should make a difference for computers in that they automatically 

transition to a "long idle" state after being in a "short idle" state for ten minutes, although 

the difference in power consumption is not large and may be overshadowed by other 

factors. Pattern may also interact with sleep settings in ways that are not represented by 

the average state use estimates utilized here, and which are beyond the scope of this report 

to explore. 

 

PM options and low-power states are well-developed in both desktops and laptops. As both 

the PLSim the MISER results confirm, enabling sleep settings is a highly effective way to 

reduce energy consumption in computers, especially during long periods of user inactivity 

(such as overnight or during work hours for residential computers). The challenge not 

currently addressed by regulations or voluntary agreement is how to get more users to 

enable (or not disable) their computer sleep settings. As there are valid reasons why a 

subset of users would need to prevent their computers from entering a low-power mode, 

either permanently or occasionally, it would be problematic to remove the option of 

disabling sleep settings and make them involuntary. Instead, efforts to reduce energy in 

computers would be more fruitfully targeted to research into how users behave toward 

computer PM. This should be aimed toward designing more effective and convincing user 

interfaces, and toward understanding and addressing the barriers that lead to users 

disabling or otherwise underutilizing computer PM options. 
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POD COFFEE MAKERS  

The two pod coffee makers showed very similar standard profile energy usage estimates 

(1076.9 Wh and 1046.4 Wh), which are higher than any device other than the 4K TV, and 

similar ranges (89% of the standard profile versus 92%). Both pod coffee makers showed a 

unique pattern in this set of devices, in that most of the range was lower energy compared 

to the standard profile: the highest-use profile was only 7% above the standard profile for 

Model A and 3% above the standard profile for Model B. In other words, most of the 

variation in usage predicted by the current model results in lower energy consumption than 

the standard profile. 

 

The pod coffee makers are also unique among this set of devices in that the active aspect is 

not a significant factor explaining variation in energy use across profiles. Although the 

heating and brewing cycle during the active period is quite energy-intensive, it requires only 

two minutes to heat the water cache from the cold state, and one minute to dispense each 

cup. As such, the added energy needed to brew six cups instead of one (Active Moderate 

versus Active Low) is overwhelmed by the energy used over the rest of the 24-hour period. 

 

Instead, PM accounts for the majority of the energy consumption variation across profiles. 

As shown in the energy usage profile results for these devices (see Figure 16 and Figure 

17), energy consumption is very similar across profiles using the high-1 and high-2 levels of 

PM (in which auto-off is enabled and set at two hours, and the user turns the device off 

after use, respectively) but much higher for profiles using the moderate level of PM, in 

which auto-off is disabled. There is no low level of PM, as the standard PM aspect – the 

factory default – is already as inefficient as possible.  

 

The first solution to saving energy with pod coffee makers then seems straightforward: 

change the factory default so that auto-off is enabled. This assumes users are less likely to 

disable the setting if it is enabled by default, than to enable the setting if it is disabled. This 

would not change the potential range of the device use profiles, but it would shift the 

standard profile down considerably, and make the higher-use profiles less likely to occur in 

actual households. Offering shorter delay periods – as is already done for the more 

advanced Model A device – would also save energy and may be considered a default setting. 

This could work well for households where only a few cups of coffee (or tea) are brewed 

within a short timeframe every morning.  

 

Unlike many other devices discussed (especially in the entertainment category) these 

devices are not intended to run for an extended duration, as their utility comes from 

producing a product (a cup of coffee) quickly rather than providing screen time. Accordingly, 

it is wasteful to leave these devices on for extended periods beyond what is necessary for 

producing coffee. The benefit of PM turning devices off when left on is that it prevents 

unnecessary thermal maintenance of the brewing water, in turn saving substantial energy. 

At the same time, users may become frustrated if pod coffee makers take what they 

perceive as “too long” to warm up from a standby state when they want coffee, especially 

since speed and convenience are expected pod coffee maker benefits. One possible reason 

users disable sleep settings is impatience waiting for devices to resume from sleep mode. 

Speeding the warm-up period and providing a user interface showing its progress may help 

prevent this annoyance, allowing a shorter sleep delay time to be effective without reducing 

user satisfaction.  
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RICE COOKER 

Although the rice cooker, like the pod coffee makers, involves heating and keep-warm 

states, the results here show a drastically different pattern of effects. The standard profile 

for the rice cooker produces a consumption estimate of 282.2 Wh, and although the range is 

somewhat smaller in absolute terms than that of the pod coffee makers, almost all the other 

profiles showed higher consumption than the standard profile. That is, the standard profile 

is almost as low as the lowest-use profile, and most of the other device use profiles resulted 

in higher energy consumption. 

 

The rice cooker is unique among the devices tested, because its pattern of use explains a 

significant proportion of variance in energy consumption across device use profiles. The 

amount of active use – in this case, how much total rice is cooked in a day – has little effect 

in this analysis, but the number of times the rice cooker is used does. A closer look reveals 

that this is because the additional amount of energy used to cook, for example, three cups 

of rice is incrementally small compared to the amount of energy used to cook one cup of 

rice. This comes down to timing: with the white rice used for testing, it took 32.5 minutes to 

cook one cup of rice, and only an additional eight minutes to cook three cups of rice.  

 

However, changing the pattern and cooking three cups of rice in two or three separate, 

fresh batches over the course of the day (for example, for lunch and dinner) requires a new 

baseline cook time level. In other words, with a pattern of use spread out over multiple 

periods per day, it takes more total time to provide the same amount of rice. This 

differentiates cooking appliances from experiential devices such as TVs and computers, 

where the amount of time actively watched or used is synonymous with the amount of 

service received. As such, although the pattern aspect reveals additional energy 

consumption, it is the consumption during active use that must be reduced to save energy. 

The rice cooker is similar to other category devices not tested here that involve heating 

water and/or keeping food or liquids warm, such as drip coffee makers, under-sink or table-

top water heaters, hot pots, and electric pressure cookers – and some conclusions can be 

cross applicable.  

 

While PM is also significant, it is less impactful than the pattern of use over the course of 

the day. Other things being equal, profiles using low PM – where the user keeps the rice 

warm most of the day – use much more energy than others, whereas turning the rice 

cooker off as soon as it’s done saves only a small amount of energy compared to leaving it 

on for another hour (say, until the meal is over).  

 

The rice cooker differs in another way from other devices tested here, in that the device 

being left on in the keep-warm state is seen by users as deliberate and functional. An online 

search reveals many people prefer to make a large pot of rice and keep it warm all day, 

claiming it tastes better than rice that has been stored in the refrigerator and reheated. In 

fact, there are warnings against a common practice of leaving rice in the keep-warm state 

for two days or longer, due to risk of bacterial growth if rice is kept warm this way for 12 

hours or longer.  

 

According to the current results, it uses more energy to make a new, smaller pot of rice 

three times a day (and turn the warmer off after one hour) than to make one large pot and 

keep it warm all day. For instance, profile #19, high-low-low (three cups of rice made once 

and left on “warm” all day) uses 548.3 Wh, compared to profile 26, high-high-mod (three 

cups of rice total, made in one-cup increments three times, turning the keep-warm function 

off after one hour) which uses 743.5 Wh. So if a user perceives these as the competing 

options, the “worse” PM strategy would actually use less energy. That said, it is still the case 

that all else being equal, turning the rice cooker off immediately after use, or within one 
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hour, still saves more energy than leaving it in the keep-warm state all day long. And users 

should certainly be discouraged from keeping rice warm longer than 12 hours, given the 

health risks. 

OVERALL 

RANGE OF ENERGY CONSUMPTION 
The range of energy consumption across profiles for each device is shown to identify the 

highest and lowest energy usage that would be seen in real life, given the assumptions in 

the profile definitions. The ranges are compared against the standard profile that represents 

or approximates the standard testing procedure. This indicates not only the percentage 

difference from the standard usage, but also whether more of the range is above the 

standard or below it.  

 

A device exhibiting a moderate range in energy consumption across profiles is not 

necessarily a bad sign for energy efficiency or standard test protocol accuracy. It is 

reasonable that devices would use more energy if actively used more hours, and that 

devices would save more energy if more aggressive PM features were used. Likewise, a very 

small range is not necessarily a good sign, as it indicates the device does not effectively 

reduce energy use for shorter active periods or in response to PM.  

 

Ideally, the range of device use behavior – and thus profile energy usage – would be 

normally distributed around the standard profile, in which case using standard testing 

methods would produce accurate and reliable estimates of the population. The current study 

cannot speak to whether this is the case, because it depends on how common these device 

use behaviors are, and understanding this would require a much greater amount of field 

research on consumer behavior than is available at this time.  

 

The larger the range in possible energy consumption outcomes, the more likely it is that the 

real-life pattern of outcomes is skewed, which is especially concerning when results show 

energy consumption levels much higher than the standard profile. For most of devices 

tested here (TVs, video game console, desktop and laptop computers, and rice cooker) the 

upper range was much larger than the lower range, indicating deviations resulting in higher 

use would be more extreme than deviations resulting in lower use. Only the two pod coffee 

makers exhibited more profiles with energy consumption below the standard profile than 

above it, which is due to the PM settings being disabled by default for those devices. 

ACTIVE USE 
The duration or frequency of active use is a significant factor influencing energy 

consumption for many of the devices. Indeed, were PM not being tested, the effects of 

active use would be more pronounced for most devices. The effect of active use across 

profiles can be seen in each device’s energy usage profile figures, which also illustrate how 

the effects of low (inefficient) PM can easily outweigh differences due to active use. 

 

Even considering the weight of PM, active use explained 40 to 43 percent of the variation in 

energy consumption for the 4K TVs and HDTVs, and 20 to 27 percent of variation for the 

desktop, laptop, video game console, and streaming device. Of these devices, the TVs, 

video game console, and desktop computer used a relatively large amount of energy in their 

standard profile compared to others. It is especially troubling how much more energy was 

used by the newer 4K TV than the HDTV. These results add weight to efforts to reduce 

power draw during these devices’ active states. 
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It is important to distinguish between active use (when the user directly benefits from the 

device being active) and the active state itself, which may continue long after active use has 

ended, if PM fails (that is, automatic low-power settings are disabled and the user neglects 

to manually turn off the device). Therefore, the high power draw of the active state 

contributes to the energy waste attributed to the PM aspect in these results. More 

aggressive improvements to energy efficiency during the active state would also save 

energy during user-idle time, when the devices are left on and unused either prior to or in 

the absence of automatic transitions to a low-power state. 

 

Reducing energy usage during the operational duration typically involves reducing energy 

use for comparable device utility: that is, to modify the device so that it uses less power 

without sacrificing functionality or features. For computers, this would be improving the way 

energy is used during idle periods. When not required, the device self-regulates to passively 

save energy. After testing multiple generations of computers for this project, improvement 

in idle energy usage was easily observed. Considering the flow diagram in Figure 3, it helps 

to promote alternate solutions, when possible. For example, a substantial energy penalty is 

paid to stream online content on a video game console versus a dedicated streaming player.  

PATTERN OF USE 
 

The pattern of use for this investigation was defined as the number of times or periods the 

device was used, and the amount of time between those uses, given a specific amount of 

total active use. One way pattern of use can affect overall energy consumption is if the 

device requires an energy-intensive warm-up or boot-up period at the beginning of each 

use, or if it has a long or otherwise wasteful cool-down period after each use. Some devices 

tested here, such as the video game console, have a separate boot-up and/or shut-down 

process, with a relatively high power draw. However, as these processes are short in 

duration, the resulting contribution to overall energy consumption by restarting the device 

multiple times during the day is not substantial.  

 

A more significant issue for pattern of use is the type of cool-down period represented by 

automatic sleep or auto-off settings with long delay times. If a device's auto-off setting is 

set for a two-hour delay, and the device is used for three hours in one sitting, an additional 

two hours of idle or wasted active state is added to its total energy consumption. However, 

if the device is used for one hour at a time spaced across three instances, up to six hours of 

idle time would be added. In this case, pattern of use can be seen as an example of a PM 

problem, in which the solutions are to reduce the amount of energy used when the device is 

on, but idle and reduce the amount of time the device spends idle. Some devices, such as 

the streaming device, exhibited a small effect of pattern due to spending more time idle 

before the device automatically switched into a lower-power mode. All other things being 

equal, pattern does matter in such situations. However, this effect was overwhelmed by 

other factors not being equal: specifically, variation in active use and PM behaviors.  

 

The rice cooker provided a third way in which pattern of use matters for energy 

consumption: when the device requires a baseline amount of energy for a single use, with 

fairly small distinctions between a small versus large amount of product or service provided. 

Specifically, the rice cooker requires a fairly small amount of additional time and energy to 

cook three cups of rice as it does to cook one cup of rice. This means that cooking three 

cups of rice at one time takes substantially less energy than cooking one cup of rice at a 

time over three instances (say, at each meal). Here, the effect of pattern can be interpreted 

as an effect of active use, in that the only solution would be to reduce the baseline energy 

consumption for the active cooking state.  
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The lesson should also apply to other types of kitchen appliances that cook food or heat 

water. Although it would seem that pod coffee makers would suffer from this effect, the 

design has already largely addressed the problem: instead of heating the entire reservoir of 

water, the pod coffee makers only heat enough water for a single cup at a time, greatly 

reducing the impact of a long keep-warm period, even when PM settings are disabled.  

 

In sum, pattern of use can affect plug load device energy consumption, but for most 

devices, the effects are small compared to the effects of PM and active use. 

POWER MANAGEMENT (PM) 
The PM definitions used for the device use profiles combined two factors: settings that 

automatically transition devices into sleep or soft-off states after a specified delay time of 

inactivity, and whether or not the user turns the device off immediately after use. For every 

device, a moderate level of PM is defined with factory default automatic setting (if any) 

along with the most likely user reaction at the end of use. Most devices have at least one 

low level, in which any PM setting is disabled and the user leaves the device on, and at least 

one high level, in which the user turns the device off after each use, negating any effect of 

automatic PM setting.  

 

Given this wide range of behaviors, it is not surprising that PM had a significant impact on 

energy consumption for all devices, and was the primary factor in variation across profiles 

for most devices. Still, while few would question the general idea that PM is important, this 

study helps show the importance of systematically examining when and how much specific 

PM behaviors (both settings and manual shut-downs) affect energy consumption.  

 

The devices studied in the current project revealed three main PM failure points: (1) when 

automatic settings are disabled or otherwise ineffectively utilized; (2) when low-power 

modes do not save much energy; and (3) when devices remain in a fully-functional active 

state during long periods of idle. A potentially-missed opportunity for reducing energy 

consumption was also identified: automatic transitions to a low-power state based on the 

status of connected devices was shown to be very effective in one device, and could be 

effective in others. 

 

The most pressing problem is how to get more devices to automatically transition into sleep 

or other low-power modes. Unlike those of earlier generations, all of these devices offered 

at least one low-power mode and an automatic PM setting for transitioning to it. However, if 

automatic sleep or auto-off settings are disabled, they do not save any energy. Worse, they 

result in devices remaining on for long periods (even all day long, every day). CalPlug's field 

study shows many office desktop computers are left idle at all times, but little research is 

available to indicate how often users leave other devices on all the time. However, the effect 

of not using PM and leaving devices in the active state all day long is so large that even if 

only a small proportion of households do this, it would take a much larger proportion of 

households consistently enacting stringent PM behaviors to counteract the wasted energy. 

 

The simplest step to getting more devices into low-power states is to enable the energy-

saving settings by default. To their credit, most devices already do this. The pod coffee 

makers are the one exception: for both models, the user would have to realize that the 

setting existed, realize that they were not enabled, and figure out how to enable them. For 

some devices, it may be possible to take away the users' ability to disable PM settings 

without reducing user satisfaction; this is already done with smart phones, and users have 

broadly accepted that limitation.  
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However, this approach could be problematic for other devices where users are accustomed 

to having more control, especially for those where users may have valid reasons for leaving 

the device on and idle for long periods (for instance, computer users who cannot remotely 

access their work desktops if they are in sleep mode). More research into when and why 

users disable their sleep settings would be needed before the effects of enforcing settings 

could be estimated. 

 

A more complicated issue is how to design the PM settings and the associated user interface 

to best encourage users to keep them enabled. Although little research has been done on 

this topic, anecdotal evidence – including countless tech forums answering user questions 

about why their devices are mysteriously turning off – indicates two problems. First, users 

are confused about sleep settings. Second, the most common response to being annoyed by 

even a few undesired sleep and shutoff events is to disable all automatic PM settings.  

 

Once settings are disabled, users may forget they even exist. Most manuals and setting 

pages, including for the devices tested here, do little to explain the reasoning behind the 

settings, or encourage users to change the settings to a longer delay period rather than 

disable them, or to try to motivate users with energy-saving or "green" messages, which 

have worked in other applications.  

 

Furthermore, almost nothing is known about exactly what settings users would ideally want 

to use, what signals might work to help prevent unwanted shut-down events, or what their 

annoyance threshold is for how long they're willing to wait for a device to restart from sleep. 

For instance, if a TV gave users a certain signal that it was going to switch off in five 

minutes so they could easily forestall a false auto-off, it could be possible to set the default 

auto-off delay time to one hour instead of four hours without any decrease in user 

satisfaction. Much more research and development is needed to fully address these issues. 

 

The second main failure point was illustrated in the current research by the set-top box, for 

which the standby mode uses almost as much energy as the fully-functional active state. As 

a result, the device showed almost no variation in energy consumption across device use 

profiles, even when the PM settings were enabled. The solution here is simple, at least in 

concept: reduce the energy consumption of the supposedly low-energy state. For the set-

top box, PM completely fails due to this problem. But at some level, this is a productive 

approach for all devices where the sleep or standby state uses substantially more energy 

than the soft-off state. The overarching goal is to get devices to spend more time in the 

low-power state, and the more that goal is met, the more important it is to incrementally 

reduce power draw in the sleep or standby state. 

 

The third failure point is when devices spend considerable time at full power during periods 

of inactivity, when they could conceivably enter a lower-power idle state. Computers lead by 

example here, by shifting into "short-idle" then "long-idle" states in the absence of user 

input; to save energy, these states pause certain processes, yet leave the device ready to 

quickly resume full activity when the user returns.  

 

While worthwhile efforts are still being made to further reduce energy in computer idle 

states, the same should be done for other devices. One example noted here is the video 

game console. When the device is not actively running a game, it switches to a main menu 

state that uses almost as much energy as active gameplay, and remains in that high-power 

state until it transitions to sleep or is turned off. Specifically, the power draw is 69.5 W for 

active game play and 63.7 W for the main system menu state, compared to 10.7 W for the 

standby mode. Given the amount of time the device can stay in the main system menu 

state, reducing consumption to something closer to the standby mode rate would be a 

substantial improvement.  



SIM Home Extended Testing  ET17SCE1190 

California Plug Load Research Center  Page 93 

September 2019 

Finally, for the sound bar, using linked devices for guiding PM was an effective approach. 

Specifically, an input-specific PM option switches the sound bar off when a device sending 

audio input to the sound bar (such as a TV) sends no input for five minutes. This feature 

could function similarly in other connected devices that offered no such option, indicating a 

missed opportunity for savings. For example, any device that required the TV to display 

content could be set to transition to standby or soft-off mode if the TV were turned off or 

transitioned to sleep mode.  

 

Other devices could be set up as a single system, with any device activating the power-

down or standby mode of another. Using CEC commands over HDMI, a TV or connected 

devices can trigger the PM action of the other, leading to the strongest link in the chain 

managing PM for all local devices. In this manner, a streaming device can force a connected 

TV to power off, if this device has more stringent PM settings (or vice versa).  

 

This same paradigm can be linked, expanding PM to use other nearby, trusted devices to 

provide energy management cuing. Currently, only HDMI-linked devices that are properly 

configured can use this power linking. For some devices, using an input sensing feature 

(provided there is a low implementation overhead) may be a consideration for controlling 

devices over an optical or Bluetooth link as well as CEC-based communication over HDMI. A 

related alternate approach would be to use a Tier-2 APS to turn off devices and reduce the 

burden of their standby loads.  

 

In sum, evaluating the effects of PM and potential improvements in its use and 

effectiveness, especially if combined with variation in active use and use patterns, is a rich 

area for continued investigation.  

EVALUATION METHOD LIMITATIONS 
The current analysis shows the promise of the device use profile approach for assessing 

potential energy consumption across various users. However, the approach is inherently 

limited by the quality and reliability of the information used to define the model's 

parameters. In the current format, each aspect – active use, pattern of use, and PM – was 

defined with at least three levels of behavior: low, moderate, and high. Moderate is 

intended to reflect the median usage, or the standard testing protocol. The high and low 

levels are intended to approximate the 10th and 90th percentiles of behavior, showing a 

large range while omitting the most extreme outlier cases.  

 

Unfortunately, solid data on how devices are used in the field is sorely lacking. As such, 

most of the definitions used here were constructed by the research team based on 

assumptions and anecdotal observations, and for PM, by the options the devices offered. 

Self-reports of the amount of active use per day are available for a few of the devices, but 

even for those, many survey questions use categories (for example, a range of hours of TV 

use) rather than point estimates.  

 

CalPlug has observed PM behaviors for office desktop computers, but it is unknown how well 

these extend to home desktops or laptops. No reliable data could be found on how people 

actually use PM in other devices, or on patterns of usage over the day. For this reason, no 

attempt was made to further differentiate weekday versus weekend use, or to extrapolate 

to estimated annual energy consumption, which would require additional levels of 

assumptions that could not be warranted.  

 

In short, as with any research of this sort, the device use profile analysis results are only as 

good as the assumptions that underlie its measures. Even assuming the definitions are 
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accepted as representing some users, the lack of data means no conclusions can be drawn 

about how many users fit each profile.  

 

The findings provide useful boundary conditions and a range of energy consumption results 

based on reasonable behaviors. If most of those behaviors produce much higher energy 

consumption estimates than the standard or “moderate” device use profile, this reduces the 

chance that natural variation in device use will average to the standard testing’s mean, and 

increases the chance that users with higher energy use profiles will outweigh those with 

lower-use profiles. This illustrates the importance of conducting more research on how 

devices are actually used in real-life situations, if accurate estimates of annual energy 

consumption for device types are desired. 

 

The limitations of the MISER system mirror those of the device use profile approach, in that 

the quality of the input data defines the quality of the output results. The main contribution 

of MISER is to calculate the energy savings if observed device PM settings were changed to 

more efficient settings. This limits the use of MISER to devices with variable PM settings, 

and to those with sufficient observational data on real-life usage. 

 

The findings demonstrate the utility and potential of the PLSim tool that was developed and 

described here. In the present version, each parameter was entered into a file template to 

create a PLSim usage schedule. The PLSim output data was analyzed for each device’s 

profile for basic range and descriptive statistics. Clearly, this manual process serves as an 

effective demonstration, but can be tedious at the present stage of development.  

EVALUATION METHOD POTENTIAL EXTENSIONS 

The methods demonstrated in this project can be extended beyond their demonstration and 

limited analysis scope. As mentioned in the previous section, the demonstration version of 

PLSim is functional, but could be improved. Further development is warranted to streamline 

the code to speed up the process, reduce the chance of error, and facilitate a larger number 

of profiles per device. Automation and elements of advanced data analysis can be applied to 

PLSim’s energy calculation. Currently, profiles are individually generated, creating a full set 

based on limited parameters. Elements of Markov Chain Monte Carlo (MCMC) can be used 

based on probability of choice, and seeded with likelihoods to generate numerous profiles to 

evaluate for energy usage with increased granularity. Field test data can be used to provide 

boundary conditions for profiles based on known usage profiles and variances based on 

observed behavioral actions.  

Streamlining the dataflow process, the generated profiles can be injected directly into PLSim 

as schedules, with the corresponding energy outputs matched to a set of parameters. 

Automated analyses, combined with results thresholding and clustering, can be used to sort 

and prioritize profile factors for subsequent analysis and reporting. Elements of this process 

may be applicable to supervised Artificial Intelligence (AI) analysis processes (possibly 

Linear Supervised Machine Learning – LinearSVM or neural networks based on Long Short-

Term Memory [LSTM]) yet the general deterministic nature of the data likely makes this 

approach excessive for profile analysis purposes.  

In 2017, CalPlug demonstrated LinearSVM is applicable (and useful) for analyzing field trial 

test data to develop cyclic use behavior models (Klopfer et al., 2019). This process implicitly 

solves hidden-chain Markov problems, essentially building a potential chain based on device 

action states. This is similar to the inverse problem we are solving, and can be used to pull 

the basis factors to build up new profile chains. Accordingly, AI techniques may have a 

potential role in pre-processing field trial data to see profile generation. 
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A more robust PLSim suite could facilitate testing additional aspec levels (for instance, the 

75th and 25th percentiles) faster, leading to larger sets of device profiles. This would enable 

assessing a broader range of PM behaviors and settings, and further illuminate the effects of 

interactions between PM and patterns of use. 

 

With improved test data, MISER can be used even more. The current report used Monitoring 

Study data, with limitations described in the Evaluation Methods section of this document. 

CalPlug’s more recent PMUI Study provides extended real-world usage data to improve 

marginal estimations for office desktop computers. A data connector has already been 

written to allow this data to be used. To extend the application of this utility beyond office 

computers, more test data would be required. Given the appropriate data input, MISER 

could provide models of granular power savings management actions, including modeling 

Tier 1 and Tier 2 APS systems in addition to linked PM devices. Until structured field trial 

data is available, this tool is relegated to computer use only. 

EXTENDED PROJECT CONSIDERATIONS 
Estimating, managing, and reducing energy use in plug load devices requires a multifaceted 

approach that encompasses elements of device design as well as understanding how the 

devices are used in actual operation. A device use profile approach is used in this 

evaluation, to identify and quantify profiles that are especially wasteful. The results provide 

key implications for prioritizing the direction of improvements in device design.  

 

Device state-based modeling has direct applications in demonstrating emerging 

technologies, designing field trials, and prioritizing new or extended design features. This 

approach to evaluating energy use allows a more dynamic way to characterize device 

operation, and with judiciously-chosen profile configurations, allows a statistically-based 

evaluation of the sources of variability and points to consider. The results also highlight 

aspects of behavior that have a significant impact on energy consumption, and yet remain 

largely unknown due to the lack of research dedicated to this area of the field. 

TESTING AND PROGRAM DEVELOPMENT 
Many modes of promoting energy efficiency hinge on decisions made based on modeling. 

Standardized testing protocols create models from a single profile of the amount of active 

use, which is treated as a median or average usage. These results are then extrapolated to 

estimate annual usage across all households containing such devices. The profile approach 

used here suggests a useful extension of such testing, providing a distribution of likely 

behaviors across users, to provide a more realistic range of expected energy usage. This 

approach can be a potential added feature in new energy modeling suites and best practices 

for energy planning. For new devices, field trial data can be used to simulate operational 

performance on devices with different operational patterns, to assess differential energy use 

and determine the potential spread of savings values. 

 

Quantifying energy usage variations for device classes can help guide efforts to improve 

efficiency and inform consumer choices, including government programs such as ENERGY 

STAR (DOE/EPA) and EnergyGuide (Commerce Department). Further extended testing for 

updated and new device categories in these programs, whether required or voluntary, could 

be focused using the outlined methods provided. Similarly, such a methodology can guide 

the extended application of energy usage bands to better contextualize real field 

performance. Estimating the energy consumption effects of various parameters of operation 

can help focus test expansion and refinement on areas of largest potential waste or high 

variance in energy usage, based on differences in how devices can be used.  
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The method outlined in this report was demonstrated to strategically rank modeled usage 

scenarios across devices to prioritize impact, cost, and priority in a dynamic balanced 

model. Identification of specific modes of waste from testing can help justify regional and 

federal device efficiency codes, where applicable. For the aforementioned reasons, 

identification of better real-world energy usage helps develop more informed and better-

targeted programs, with more knowledgeable decisions in the process.  

 

The results of the current analysis quantify the extent to which ineffective, misused, or 

disabled PM options can substantially increase daily energy consumption (or fail to 

substantially decrease that consumption) compared to the standard usage profile. Some 

devices are subject to manufacturers’ voluntary agreements, based on goals set by careful 

modeling technology in the field.  

 

Similarly, external regulation of features and the identification of groups of devices sharing 

common performance capabilities requires a clear understanding of how the devices and 

their feature sets operate. However, voluntary goals, as well as regulatory allowances, are 

based on the existence of energy-saving features, regardless of the actual performance of 

these features in real-life usage. If saving energy is the goal, it is important for 

manufacturers and the industry to emphasize that these features are effective in the field, 

and conduct more testing, research, and development to improve user interfaces and 

thereby encourage greater adoption. 
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LOAD SHIFTING 
There are two ways to get household devices to respond to DR events: (1) control them so 

they automatically reduce energy use during the event (as in a smart thermostat reducing 

an air conditioner temperature setting); or (2) ask users to voluntarily power down devices 

as possible during the event. Automatic control is more reliable and thus preferable, but it is 

problematic for most plug load devices, including all the entertainment, office, and kitchen 

devices tested in the current report. The reason is simple: there is no lower-power active 

state to which a DR command could shift devices, and cutting power while in use would be 

an unacceptable disruption. Even when certain settings could be modified to save energy 

while maintaining active use (for example, by reducing TV screen brightness), such changes 

could cause users to suspect malfunction. 

 

Devices may be on and wasting energy when they are not being actively used, perhaps 

without user knowledge; the results reported here show poor PM behaviors can lead to 

substantial energy consumption. However, high energy demand due to poor PM practices 

should be addressed through improved energy efficiency: that is, with measures that save 

energy all the time, not just during DR events.  

 

The current project cannot address the inherent challenges of remotely controlling these 

plug load devices during DR events. However, the device use profile approach combined 

with PLSim estimates could be used to predict and understand the effects of voluntary load-

shifting behaviors, either in response to DR requests or TOU pricing incentives. Analysis of 

different DR strategies could predict savings potential in different implementation cases. The 

current analyses did not specify the time of day devices were used, but began the 24-hour 

clock at the point of first use and cycled through the profile patterns until the period ended. 

However, the methodology could easily be adapted to model specific time of use, comparing 

profiles in which usage in peak hours was shifting to off-peak hours. PLSim could be 

extended to include pricing to indicate how the total cost of electricity would vary depending 

upon the chosen time-specific profile.  

 

That said, the nature of use poses challenges with enacting successful load-shifting 

strategies on many classes of plug load devices, such as those studied here. Activities like 

watching TV, making coffee or rice, or using a home computer tend to be tied to specific 

times of day, such as meal times and evenings when other family members are present. 

Some households may be willing to forego watching TV and choose another evening activity 

instead, such as going out to the movies or playing board games, if sufficiently motivated 

by emergency DR events. However, the activities associated with these plug load devices 

cannot be easily shifted to other periods, as might be possible with running the dishwasher 

or laundry machines, or charging an electric vehicle. 

INCENTIVES 
One strategy for promoting energy-saving devices is incentives, including customer rebates, 

retail or midstream incentives, and manufacturer-facing programs. Deemed savings and 

market transformation efforts offer the potential to reduce the population of inefficient 

devices by promoting higher-value alternatives with improved energy efficiency. Such 

efforts have historically focused on larger appliances such as refrigerators, incentivized 

through rebates and promoted with labeled efficiency ratings.  

 

Incentives are less often used for plug load devices such as consumer electronics, generally 

due to their short device lifetime and the need to classify the savings performance of 

specific features, often on a per-device basis. Although plug load devices use relatively little 

energy compared to major appliances, HVAC, or lighting, most households contain a large 

number of plug load devices, and their cumulative amount of idle load waste is substantial. 
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The baseline problem is similar to that of lighting: any one light bulb uses very little energy, 

but all the light bulbs in a house add up.  

 

However, the problem is further complicated because plug load devices are so variable, and 

each class of device requires its own analysis, testing, and incentive program. This 

motivates a judicious approach toward incentives to promote energy-efficient plug load 

devices. The device use profile analyses presented here can be used to identify and 

prioritize devices with particularly-problematic ranges of energy consumption, especially 

those with ineffective PM schemes.  

 

Incentivizing improvements in user design and energy-saving features for devices with poor 

performance in these tests has great potential, as does incentivizing the purchase of devices 

whose device use profiles show more positive results. Specifically, in evaluating measures, 

field trial data can be collected and extended across different devices to assess energy use 

spreads. Similarly, quotas for active features contributing to energy use in different states 

of operation can be assessed as a means of feature incentivization. Clear modeling and 

establishment of savings potential helps provide useful ex-ante values to expedite measure 

and program development. Better assessment of device operation in real-world conditions 

would improve predictions of incentive program performance for benefits, and provide 

guidance on points for increased cost.  
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APPENDIX A 
After the publication date of the original SIM Home report in 2017 (ET14SCE1170), a 

previously-unreferenced dataset became available (RECS 2015). Some elements of the 

RECS 2015 questionnaire did not match that of the RECS 2009. An extended comparison is 

shown in the tables below. 

ENTERTAINMENT DEVICES 
The RECS 2015 results are largely similar to those for RECS 2009, with the exception being 

the larger proportion of LED TVs and fewer CRT TVs. 

TABLE A1. TVS 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

Number of TVs     

  0 1% 5% 1% 2% 

  1 17% 25% 20% 25% 

  2 29% 30% 33% 33% 

  3 26% 25% 24% 23% 

  4 15% 10% 13% 10% 

  5 9% 3% 6% 4% 

  6 or more 3% 3% 3% 2% 

Type - Primary TV     

  LCD 49%  42% 40% 

  CRT 23%  44% 9% 

  Plasma 11%  9% 14% 

  LED 9%  1% 35% 

  DLP (Projector) 7%  5% 2% 

  Flat Panel, Unknown 1%    

  Other 0%    

Type - Secondary+ TV     

  LCD 45%  29% 12% 

  CRT 40%  64% 31% 

  Plasma 6%  5% 8% 

  LED 4%  1% 23% 

  DLP (Projector) 3%  2% 1% 

  Flat Panel, Unknown 1%    

  Other 1%    

Type - One or More     

  CRT  71%   

  LCD Smaller than 36 in.  31%   

  LCD 36 in. or Larger  32%   

  Plasma  13%   
 

Their size categories increased substantially, as did the percentage of households reporting 

larger TV screens. 
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TABLE A2. TV FEATURES 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

Screen Size for Primary TV        

  Up to 19 in. 3%      

  20-35 in. 33%      

  36-40 in. 13%      

  41-45 in. 15%      

  46-50 in. 17%      

  51-55 in. 11%      

  56 in. or More 8%      

           

  Up to 20 in.     10%  

  21 to 36 in.     47%  

  37 in. or More     42%  

      

  Up to 27 in.      11% 

  28 to 39 in.      28% 

  40 to 59 in.      52% 

  60 in. or More      9% 

           

Average Estimated Age of TV (in years)        

  Primary 5.1      

  Secondary+ 6.7      

           

Features of Primary TV        

  HD 75%      

  HDMI 61%      

  3D 2%      

  Backlit LED 2%      

  Smart TV 2%      

  WiFi/Internet 5%      

  ENERGY STAR 38%      

 

The RECS 2015 questionnaire used some different categories for audiovisual equipment 

than it did in 2009 (see Table A3) but some trends can be seen. Game consoles are more 

prevalent, and most households have some type of VCR, DVD, or Blu-ray player. The 

questionnaire did not distinguish between cable or satellite boxes, only whether the set-top 

box had DVR capability. Half of households (52%) reported at least one set-top box without 

a DVR, and another half (48%) reported at least one with DVR. Additional analyses 

combining these two answers (not shown) indicate that 77% of homes have at least one 

cable or satellite box, with 49% having two or more. A substantial minority of household 

reports having streaming devices and home theater or audio systems. 
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TABLE A3. AUDIOVISUAL EQUIPMENT 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

           

Accessory on Primary TV (any TV for RECS 2015)        

  Game Console 26%   27% 38% 

  VCR 25%   18% 28% 

  DVD 54%   52%  

  VCR/DVD     26%  

 DVD or Blu-ray    64% 

  Blu-ray 19%      

  DVR/Tivo 7%   10%  

 DVR    7% 

  Digital TV Converter 5%   23%  

  HD Satellite 17%      

  HD Cable 18%      

  HD Cable Multifunction DVR 19%      

  Cable Multifunction DVR 3%      

  Standard Cable Box 12%      

  Standard Satellite Box 6%      

  Cable Box w DVR     20%  

  Cable Box no DVR     37%  

  Satellite Box w DVR     12%  

  Satellite Box no DVR     13%  

  Cable or Satellite Box w DVR      48% 

  Cable or Satellite Box no DVR      52% 

  Media Computer 1%     7% 

  Internet Streaming 5%     29% 

  Sound System 1%      

  Stereo Component 1%      

  Home Theater     19%  

  Home Theater or Audio System      26% 

  Amplifier 3%      

  Other 9%   3%  

           

(table continued on next page) 

  



SIM Home Extended Testing  ET17SCE1190 

California Plug Load Research Center  Page 102 

September 2019 

TABLE A4. AUDIOVISUAL EQUIPMENT, CONTINUED 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

           

Accessory on Secondary+ TV        

  Game Console 17%   16%  

  VCR 17%   12%  

  DVD 35%   31%  

  VCR/DVD     13%  

  Blu-ray 6%      

  Digital TV Converter 3%   14%  

  DVR/TiVo 3%   5%  

  Media Computer 0%      

  Internet Streaming 2%      

  Sound System 1%      

  Stereo Component 0%      

  Home Theater     5%  

  Amplifier 1%      

  Other 5%   1%  

  HD Satellite 12%      

  HD Cable 15%      

  Cable Multifunction DVR 2%      

  HD Cable Multifunction DVR 8%      

  Standard Cable Box 16%      

  Standard Satellite Box 8%      

  Cable Box w DVR     8%  

  Cable Box no DVR     41%  

  Satellite Box w DVR     6%  

  Satellite Box no DVR     17%  

One or More AV Devices in Home        

  DVD / VCR   72%    

  Cable or Satellite Box (no DVR)   38%    

  Cable or Satellite Box w/DVR   36%    

  Gaming System   25%    

  Converter Box   21%    

  Stand-Alone Stereo, iPod, etc.   21%    

  Stand-Alone DVR   13%    

  Sound System for TV   31%    

  Stereo System     43%  

 

The RECS 2015 data on time use for the primary TV shows no change from RECS 2009. 

RECS 2015 does not provide data granularity at the level of TV usage for particular 

applications such as using the TV while gaming versus not gaming. Specific usage for these 

devices must be inferred as a subset of TV usage and additional third party literature.  
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TABLE A8. DEVICE USE FOR TVS 

     Distribution of number of hours per day 

    N Mean s.d. Min 10th 25th 
50t
h 75th 90th Max 

CLASS 2012           

 All Types 5416 3.1 3.3 0.0 0.1 0.7 2.1 4.3 7.1 24.0 

 LCD 2526 3.3 3.3 0.0 0.3 1.0 2.1 4.3 7.1 24.0 

 CRT 1826 2.6 3.3 0.0 0.1 0.4 1.4 3.6 6.0 24.0 

 Plasma 411 3.6 3.2 0.0 0.6 1.4 3.0 5.0 7.4 24.0 

 LED 324 3.4 3.1 0.0 0.4 1.1 2.9 5.0 7.1 20.0 

 Projector 254 4.1 3.5 0.0 0.6 1.7 3.6 5.7 7.1 24.0 

            

RECS 2009           

 TV 1 Weekdays 11916 5.6 3.5 0.5 2.0 2.0 5.0 8.0 13.0 13.0 

 TV 1 Weekends 11916 6.2 3.8 0.5 2.0 5.0 5.0 8.0 13.0 13.0 

 TV 2 Weekdays 9486 2.9 2.9 0.5 0.5 0.5 2.0 5.0 8.0 13.0 

 TV 2 Weekends 9486 3.3 3.2 0.5 0.5 0.5 2.0 5.0 8.0 13.0 

            

RECS 2009           

 LCD TV 1 Weekdays 4969 5.5 3.4 0.5 2.0 2.0 5.0 8.0 13.0 13.0 

 LCD TV 1 Weekends 4969 6.2 3.7 0.5 2.0 5.0 5.0 8.0 13.0 13.0 

 LCD TV 2 Weekdays 2782 3.0 2.9 0.5 0.5 0.5 2.0 5.0 5.0 13.0 

 LCD TV 2 Weekends 2782 3.5 3.2 0.5 0.5 2.0 2.0 5.0 8.0 13.0 

            

RECS 2015           

 TV 1 Weekdays 5544 5.7 3.6 0.5 2.0 2.0 5.0 8.0 13.0 13.0 

 TV 1 Weekends 5544 6.6 3.7 0.5 2.0 2.0 5.0 8.0 13.0 13.0 

 TV 2 Weekdays 4142 3.2 2.9 0.5 0.5 2.0 2.0 5.0 8.0 13.0 

 TV 2 Weekends 4142 3.7 3.2 0.5 0.5 2.0 2.0 5.0 8.0 13.0 

            

ENERGY STAR Testing Protocol           

 TV           

  Active  5.0         

   Off  19.0         
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COMPUTERS AND OFFICE EQUIPMENT 
The updated RECS 2015 data shows a similar number of computers per household, and a 

similar number of households with no computers (see Table A5). As expected, households 

are shifting toward a greater likelihood of having laptops and a lower likelihood of having 

desktops, but there remains a substantial proportion of households using desktops. 

TABLE A5. NUMBER AND TYPES OF COMPUTERS 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

Any Computers 92% 84%  78%   

Number of Computers        

    0 8% 16% 22% 20% 

    1 32% 38% 41% 36% 

    2 39% 27% 23% 26% 

    3 9% 12% 9% 12% 

    4 or More 10% 7% 5% 7% 

Primary Computer        

  None 8%   22%  

  Desktop 49%   44%  

  Laptop 39%      

  Notebook 1%      

  Laptop or Notebook     35%  

  Computer w Integrated Monitor 1%      

  Tablet 2%      

  Other 2%      

Secondary Computer        

  None 42%   63%  

  Desktop 26%   15%  

  Laptop 29%      

  Notebook 1%      

  Laptop or Notebook     22%  

  Computer w Integrated Monitor 0%      

  Tablet 2%      

  Other 0%      

 

(table continued on next page) 
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TABLE A6. NUMBER AND TYPES OF COMPUTERS, CONTINUED 

    CLASS 2012  RASS 2009 RECS 2009 RECS 2015 

N    1982 8717 12064 5680 

Of Up to Two Most Used Computers:        

  One Laptop Only 16%   20%  

  Two Laptops 15%   14%  

  One Desktop Only 26%   33%  

  Two Desktops 14%   8%  

  One Desktop and One Laptop 29%   26%  

     

Of All Computers:     

  No Desktops or Laptop     20% 

  Only Laptop(s)     37% 

  Only Desktop(s)     15% 

  Both Laptop(s) and Desktop(s)     28% 

     

Number of Desktops        

  0   31%   57% 

  1   54%   36% 

  2   12%   6% 

  3   3%   1% 

Number of Laptops        

  0   50%   35% 

  1   35%   39% 

  2   12%   18% 

  3   4%   8% 

 

RECS 2015 does not provide data about individual types of office equipment. The revised 

question asks for the total number of the following plug load devices: printers, scanners, fax 

machines, or copiers (see Table ). Over a third of households have no such devices 

connected to their computers, and the majority who have any have only one.  

TABLE A7. OFFICE EQUIPMENT 

    RECS 2015 

N    5680 

Number of Printers, Scanners, Fax Machines, or Copiers   

  0 37% 

  1 54% 

  2 7% 

  3 2% 

  4 0% 

  5 0% 

  9 0% 
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